1 | b \ k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 3 | 2 | 1 | 1 | 4 | 3 | 1 | 6 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 8 | 3 | 1 | 2 | 1 | 1 | 2 | 5 | 1 | 4 | 1 | 3 | 2 | 1 | 2 | 8 | 583 | 1 | 2 | 1 | 1 | 6 | 1 | 1 | 4 | 1 | 2 | 2 | 5 | 2 | 4 | 7 | 1 | 2 | 1 | 5 | 2 | 1 | 1 | 2 | 3 | 3 | 2 | 1 | 1 | 4 | 3 | 1 | 2 | 3 | 1 | 10 | 1 | 2 | 4 | 1 | 2 | 2 | 1 | 1 | 8 | 7 | 2 | 582 | 1 | 1 | 2 | 1 | 1 | 2 | 3 | 2 | 16 | 5 | 1 | 4 | 3 | 2 | 6 | 3 | 1 | 2 | 1 | 1 | 2 | 1 | 3 | 4 | 1 | 1 | 8 | 3 | 6 | 6 | 1 | 3 | 2 | 1 |
3 | 3 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 3 | 6 | 2 | 1 | 1 | 8 | 1 | 3 | 1 | 2 | 1 | 1 | 3 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 4 | 1 | 5 | 4892 | 1 | 47 | 2 | 4 | 1 | 1 | 2 | 10 | 1 | 5 | 1 | 2 | 1 | 1 | 9 | 2 | 2 | 1 | 1 | 44 | 4 | 7 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 5 | 4 | 1 | 1 | 1 | 2 | 11 | 9 | 1 | 12 | 2 | 11 | 2 | 2 | 4 | 1 | 3 | 2 | 1 | 1 | 1 | 2 | 1 | 3 | 3 | 4 | 2 | 1 | 4 | 4 | 1 | 367 | 1 | 4 | 5 | 5 | 3 | 2 | 1 | 1 | 1 | 2 | 3 | 1 | 1 | 12 | 2 | 1 | 4 | 12 | 1 | 4891 | 1 | 2 | 1 | 1 | 2 |
4 | 4 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 3 | 4 | 4 | 1 | 3 | 1 | 1 | 2 | 1 | 3 | 1 | 2 | 4 | 2 | 1 | 1 | 1 | 4 | 2 | 1 | 1 | 1 | 46 | 3 | 1 | 3 | 2 | 12 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 6 | 1 | 3 | 1 | 1 | 2 | 2 | 1 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 5 | 2 | 1 | 2 | 108 | 1 | 1 | 167 | 4 | 4 | 2 | 1 | 291 | 1 | 18 | 1 | 1 | 1 | 1 | 66 | 1 | 8 | 1 | 1 | 2 | 2 | 1 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 1 | 3 | 3 | 1 | 2 | 1 | 2 |
5 | 5 | 1 | 1 | 2 | 2 | 1 | 1 | full numerical covering set | 1 | 1 | 2 | full numerical covering set | 1 | 2 | 1 | 1 | 2 | 1 | 3 | 4 | 1 | 1 | 4 | 1 | 2 | 2 | 1 | 4 | 2 | 1 | 1 | full numerical covering set | 3 | 1 | 8 | full numerical covering set | 1 | 2 | 1 | 5 | 1036 | 1 | 1 | 2 | 3 | 1 | 2 | 1 | 1 | 2 | 1 | 14 | 2 | 3 | 1 | full numerical covering set | 1 | 10 | 2 | full numerical covering set | 4 | 6208 | 1 | 1 | 2 | 1 | 1 | 2 | 3 | 1 | 6 | 1 | 2 | 8 | 257 | 4 | 2 | 1 | 2 | full numerical covering set | 1 | 2 | 40 | full numerical covering set | 1 | 2 | 1 | 1 | 4 | 1 | 2 | 2 | 1 | 1 | 2 | 3 | 10 | 2 | 1 | 2 | 4 | 5 | 2 | full numerical covering set | 1 | 1 | 6 | full numerical covering set | 1 | 12 | 3 | 1 | 2 | 1 | 1 | 2 | 15 | 1 | 4 | 1 | 1 | 4 | 79 | 2 | 48 | 1 | 1 | full numerical covering set | 1 |
6 | 6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 5 | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 5 | 5 | 2 | 1 | 1 | 1 | 1 | 3 | 1 | 2 | 1 | 1 | 7 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 8 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 7 | 1 | 1 | 4 | 2 | 4 | 1 | 2 | 1 | 1 | 2 | 5 | 1 | 2 | 1 | 1 | 1 | 2 | 3 | 1 | 1 | 1 | 9 | 2 | 6 | 1 | 1 | 1 | 1 | 3 | 1 | 6 | 1 | 2 | 1 | 1 | 3 | 1 | 4 | 1 | 1 | 2 | 23 | 1 | 2 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 1 |
7 | 7 | 4 | 1 | 1 | 1 | 2 | 1 | 3 | 1 | 6 | 1 | 1 | 4 | 4 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 124 | 3 | 9 | 3 | 2 | 1 | 11 | 1 | 18 | 1 | 1 | 2 | 2 | 1 | 1 | 8 | 2 | 1 | 1 | 1 | 8 | 3 | 1 | 1 | 2 | 11 | 3 | 1 | 2 | 3 | 1 | 2 | 2 | 1 | 1 | 1 | 20 | 2 | 3 | 1 | 12 | 2 | 5 | 1 | 12 | 1 | 3 | 18 | 6 | 1 | 1 | 2 | 2 | 1 | 1 | 29 | 44 | 1 | 1 | 2 | 4 | 2 | 1 | 3 | 2 | 3 | 47 | 1 | 2 | 1 | 3 | 10 | 6 | 1 | 3 | 1 | 2 | 1 | 1 | 1 | 216 | 2 | 21 | 2 | 14 | 1 | 7 | 1 | 2 | 1 | 1 | 4 | 32 | 3 | 11 | 1 | 8 | 1 | 1 | 2 | 252 | 2 | 1 | 3 | 2 | 1 | 7 | 9 |
8 | 8 | full algebraic covering set | 1 | 2 | 2 | 1 | 1 | 2 | full algebraic covering set | 1 | 2 | 1 | 1 | 4 | 1 | 3 | 4 | 1 | 2 | 2 | 1 | 3 | 2 | 3 | 1 | 2 | 3 | full algebraic covering set | 4 | 1 | 1 | 20 | 1 | 2 | 2 | 1 | 3 | 4 | 3 | 1 | 4 | 1 | 1 | 2 | 1 | 3 | 4 | full numerical covering set | 2 | 2 | 1 | 1 | 2 | 7 | 1 | 2 | 1 | 1 | 14 | 9 | 12 | 4 | 1 | 3 | full algebraic covering set | 1 | 4 | 2 | 115 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 8 | 1 | 2 | full numerical covering set | 1 | 4 | 6 | full numerical covering set | 1 | 2 | 31 | 2 | 6 | 3 | 1 | 56 | 9 | 2 | 194 | 1 | 1 | 2 | 3 | 2 | 6 | 1 | 2 | 6 | 3 | 4 | 20 | 1 | 6 | 2 | 1 | 1 | 16 | 11 | 2 | 4 | 1 | 1 | 820 | 1 | 2 | 4 | 1 | 2 | 2 | full algebraic covering set | 1 | 4 | 3 |
9 | 9 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | 1 | 1 | 4 | 1 | 2 | 3 | 1 | 6 | 1 | 2 | 1 | 1 | full numerical covering set | 2 | 1 | 1 | 1 | 2 | 1 | 2 | full numerical covering set | 9 | 2446 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 5 | 2 | 2 | 11 | 1 | 1 | 2 | 10 | 1 | 1 | 3 | 1 | 22 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 25 | 3 | 26 | 1 | 7 | 1 | 2 | 6 | 1 | 13 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 6 | 1 | 1 | 57 | 1 | 4 | 2 | 1 | 1 | 2 | 2 | 1 | 10 | 1 | 2 | 4 | 1 | 6 | 1 | 1 | full numerical covering set | 1 | 1 | 9 | 3 | 2 | 6 | 1 | full numerical covering set | 2 | 6 | 2 | 1 | 1 | 1 | 8 | 17 | 1 |
10 | 10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 6 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 26 | 2 | 5 | 2 | 1 | 4 | 1 | 1 | 1 | 1 | 3 | 4 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 5 | 1 | 1 | 11 | 1 | 2 | 1 | 1 | 1 | 1 | 10 | 5 | 2 | 1 | 1 | 1 | 6 | 2 | 1 | 1 | 1 | 1 | 8 | 2 | 5 | 5 | 1 | 6 | 2 | 1 | 1 | 3 | 1 | 1 | 2 | 1 | 1 | 1 | (>2147483645) | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 15 | 1 | 1 | 8 | 4 | 2 | 3 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 18 | 1 | 2 | 1 | 2 | 4 | 3 |
11 | 11 | 2 | 1 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 10 | 1 | 2 | 2 | 1 | 1 | 8 | full numerical covering set | 1 | full numerical covering set | 35 | 8 | 2 | 1 | 1 | 8 | 3 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 8 | full numerical covering set | 1 | full numerical covering set | 1 | 40 | 4 | 545 | 28 | 2 | 9 | 1 | 12 | full numerical covering set | 2 | full numerical covering set | 1 | 2 | 2 | 3 | 1 | 2 | 1 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 21 | 20 | 4 | 3 | 2 | 10 | 1 | 5 | 88 | full numerical covering set | 1 | full numerical covering set | 1 | 8 | 2 | 1 | 9 | 4 | 1 | 1 | 54 | full numerical covering set | 1 | full numerical covering set | 1 | 10 | 4 | 1 | 2 | 2 | 3 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 6 | 3 | 6 | 2 | 9 | 5 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 4 | 1 | 1 | 2 | 13 | 1 | 2 | full numerical covering set | 14 | full numerical covering set | 1 |
12 | 12 | 1 | 3 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 3 | (>33554430) | 1 | 2 | 1 | 1 | 78 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 3 | 1 | 2 | 1 | 1 | 144 | 1 | 2 | 1 | 1 | 1 | 1 | 199 | 1 | 6 | 30 | 3 | 3 | 1 | 2 | 1 | 5 | 12 | 1 | 2 | 1 | 1 | 2 | 8 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 32 | 2 | 4 | 1 | 4 | 1 | 2 | 1 | 2 | 13 | 1 | 11 | 1 | 6 | 3 | 3 | 3 | 1 | 1 | 1 | 1 | 15 | 113 | 1 | 3 | 1 | 2 | 1 | 1 | 2 | 1 | 4 | 1 | 47 | 1 | 1 | 4 | 1 | 1 | 2 | 36 | 6 | 1 | 2 | 1 | 23 | 20 | 2 | 2 | 1 | 29 | 4 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 16 | 5 | 2 | 2 |
13 | 13 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 564 | 1 | 3 | 1 | full numerical covering set | 3 | 1 | 11 | 30 | 5 | 1 | 2 | 3 | 1 | 1 | 1 | full numerical covering set | 2 | 10574 | 4 | 1 | 1 | 2 | 1 | 8 | 8 | 1 | 2 | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 1 | full numerical covering set | 6267 | 6 | 34 | 76 | 1 | 2 | 2 | 1 | 3 | 2 | 2 | 42 | 2 | 1 | 1 | 3 | 26 | 2 | 1 | 570 | 15 | 1 | 1 | full numerical covering set | 1 | 3 | 3 | 2 | 3 | 1 | 2 | 1 | 1 | 4 | 2 | full numerical covering set | 1 | 30 | 1 | 1 | 3 | 1 | 1 | 20 | 14 | 3 | 1 | 1 | 1 | 1 | 2 | 6 | 1 | 5 | 1 | 51 | 3 | 1 | 56 | 10 | 2 | 1 | 2 | 13 | 12 | 4 | 1 | 6 | 1 | 1 | 11 | 3 | 1552 | 1 | 4 | 2 | 1 | 1 | 3 | full numerical covering set | 2 |
14 | 14 | 2 | 1 | 1 | full numerical covering set | 1 | 6 | 2 | 1 | 1 | 6 | full numerical covering set | 1 | 2 | 1 | 1 | 2 | 1 | 2 | full numerical covering set | 1 | 4 | 16 | 3 | 1 | 4 | full numerical covering set | 1 | 4 | 23 | 1 | 4 | 1 | 1 | full numerical covering set | 1 | 2 | 2 | 1 | 1 | 2 | full numerical covering set | 2 | 2 | 1 | 1 | 4 | 1 | 1 | full numerical covering set | 1 | 2 | 2 | 1 | 1 | 2 | full numerical covering set | 2 | 2 | 1 | 4 | 126 | 13 | 1 | full numerical covering set | 1 | 4 | 14 | 1 | 1 | 2 | full numerical covering set | 1 | 1182 | 3 | 1 | 2 | 1 | 1 | full numerical covering set | 9 | 2 | 2 | 1 | 5 | 2 | full numerical covering set | 2 | 22 | 3 | 1 | 2 | 1 | 1 | full numerical covering set | 9 | 6 | 2 | 1 | 3 | 6 | full numerical covering set | 1 | 2 | 3 | 1 | 4 | 1 | 2 | full numerical covering set | 3 | 2 | 12 | 1 | 1 | 2 | full numerical covering set | 5 | 6 | 1 | 3 | 68 | 1 | 1 | full numerical covering set | 11 | 2 | 8 | 15 |
15 | 15 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 10 | 1 | 1 | 1 | 2 | 1 | 3 | 1 | 6 | 1 | 1 | 3 | 4 | 2 | 1 | 1 | 30 | 7 | 1 | 4 | 4 | 1 | 1 | 1 | 12 | 1 | 1 | 1 | 2 | 1 | 13 | 1 | 8 | 1 | 1 | 1 | 112 | 1 | 1 | 2 | 16 | 1 | 1 | 2 | 6 | 3 | 1 | 4 | 2 | 2 | 7 | 2 | 6 | 1 | 1 | 1 | 2 | 1 | 3 | 5 | 20 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 20 | 1 | 1 | 3 | 4 | 1 | 1 | 1 | 8 | 1 | 1 | 1 | 2 | 4 | 3 | 2 | 2 | 1 | 1 | 2 | 6 | 1 | 1 | 1 | 2 | 12 | 3 | 1 | 2 | 3 | 3 | 6 | 2 | 3 | 1 | 1 | 2 | 2 | 39 | 1 | 2 | 1 | 3 | 1 | 4 | 2 | 1 | 3 |
16 | 16 | 1 | 1 | 2 | full algebraic covering set | 3 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 4 | 1 | 1 | 1 | 1 | 1074 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 7 | 1 | 4 | 1 | 1 | full numerical covering set | 2 | 1 | 2 | 1 | 3 | 1 | 3 | 2 | 1 | 1 | 1 | 15 | 23 | 2 | 1 | 1 | 1 | 6 | 2 | 1 | 3 | 2 | 1 | 1 | 1 | full algebraic covering set | 1 | 3 | 5 | 9 | 2 | 2 | 1 | 1 | 6 | 1 | 1 | 1 | 2 | 1 | 3 | 2 | 1 | 72 | 1 | 1 | 1 | 54 | 2 | 1 | (>15000) | 2 | 2 | 1 | 1 | 2 | 3 | 9 | 1 | 1 | 1 | 1 | 33 | 2 | 4 | 5 | 2 | 1 | 1 | 5 | 1 | 1 | 1 | 4 | 2 | 9 | 3 | 1 | 1 | 1 | 1 | 6 | 2 | 3 | 2 | 1 | 2 | 1 | 3 | 1 |
17 | 17 | 4 | 47 | 1 | 6 | 1 | 1 | 190 | 1 | 2 | 1356 | 1 | 2 | 2 | 1 | 2 | 4 | 3 | 1 | 2 | 13 | 1 | 2 | 9 | 1 | 2 | 1 | 2 | 2 | 41 | 3 | full numerical covering set | 3 | 1 | 46 | 1 | 1 | 2 | 1 | 1 | 20 | 1 | 3 | 72 | 3 | 1 | 20 | full numerical covering set | 2 | 38 | 11 | 8 | 6 | (>10000) | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 72 | 15 | 1 | 14 | 3 | 1 | 4 | 5 | 1 | 2 | 1 | 2 | 24 | 1 | 2 | 16 | 3 | 1 | 2 | 1 | 3 | 6 | 1 | 1 | 10 | 5 | 27 | 4868 | 1 | 1 | 12 | 51311 | 4 | 6 | 1 | 3 | 4 | 1 | 1 | 2 | 1 | 4 | 254 | 871 | 2 | 144 | 23 | 5 | 86 | 1 | 4 | 2 | 109 | 3 | 10 | 1 | 11 | 20 | 189 | 4 | 684 | 3 | 1 | 2 | 1 | 1 | full numerical covering set | 225 |
18 | 18 | 1 | 1 | 3 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 10 | 3 | 1 | 1 | 1 | (>33554430) | 9 | 2 | 1 | 1 | 6 | 1 | 2 | 8 | 1 | 6 | 1 | 1 | 3 | 1 | 3 | 1 | 1 | 3 | 457 | 19 | 2 | 9 | 1 | 1 | 2 | 3 | 1 | 1 | 29 | 4 | 1 | 1 | 1 | 1 | 4 | 2 | 1 | 1 | 10 | 2 | 1 | 2 | 3 | 1 | 7 | 1 | 1 | 3 | 1 | 3 | 58 | 3 | 1 | 1 | 10 | 2 | 3 | 8 | 6 | 6 | 1 | 3 | 1 | 5 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 3 | 1 | 2 | 1 | 2 | 44 | 1 | 6 | 1 | 1 | 1 | 2 | 3 | 1 | 11 | 11 | 4 | 3 | 2 | 3 | 1 | 1 | 15 | 1 | 4 | 1 | 5 | 35 | 1 | 1 | 1 | 292318 | 236 | 2 | 1 | 1 | 1 | 3 |
19 | 19 | 2 | 1 | 1 | 3 | 78 | 14 | 1 | 1 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 1 | 17 | 6 | 14 | 29 | 1 | 1 | 6 | 1 | 1 | 1 | 2 | 4 | 1 | 3 | full numerical covering set | 1 | full numerical covering set | 2 | 286 | 1 | 1 | 8 | 2 | 1 | 35 | 1 | 2 | 4 | 1 | 3 | 2 | 2 | 1 | 3 | full numerical covering set | 1 | full numerical covering set | 2 | 2 | 3 | 1 | 4 | 2 | 1 | 3 | 2 | NA | 1 | 1 | 1 | 2 | 2 | 3 | 1 | full numerical covering set | 4 | full numerical covering set | 43 | 2 | 5 | 5 | 2 | 4 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 10 | 18 | 1 | 2 | full numerical covering set | 2 | full numerical covering set | 2 | 2 | 1 | 77 | 12 | 2 | 2 | 1 | 1 | 50 | 4 | 105 | 1 | 8 | 4 | 1 | 1 | full numerical covering set | 4 | full numerical covering set | 1 | 34 | 13 | 1 | 4 | 4 | 1 | 19 | 1 | 2 | 1 | 33 | 1 | 32 | 4 | 1165 | 1 |
20 | 20 | 2 | 1 | 1 | 2 | 1 | 15 | 2 | full numerical covering set | 1 | 2 | 3 | 1 | full numerical covering set | 1 | 4 | 8 | 13 | 1 | 14 | 1 | 1 | 106 | 1 | 2 | 10 | 1 | 1 | 4 | full numerical covering set | 1 | 2 | 1 | 1 | full numerical covering set | 1 | 2 | 58 | 1 | 2 | 2 | 1 | 5 | 2956 | 1 | 5 | 2 | 1 | 3 | 6 | full numerical covering set | 1 | 4 | 1 | 2 | full numerical covering set | 1 | 108 | 2 | 1 | 1 | 8 | 1531 | 3 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | full numerical covering set | 3 | 2 | 1 | 1 | full numerical covering set | 13 | 10 | 2 | 1 | 1 | 2 | 7 | 2 | 58 | 1 | 1 | 2 | 5 | 1 | 58 | full numerical covering set | 1 | 2 | 1 | 5 | full numerical covering set | 7 | 20 | 12 | 15 | 2 | 2 | 1 | 13 | 14 | 1 | 1 | 134 | 3 | 1 | 6 | full numerical covering set | 1 | 8 | 3 | 1 | full numerical covering set | 1 | 14 | 12 | 1 | 2 | 8 | 23 | 1 | 10 | 5 |
21 | 21 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 10 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 3 | 1 | full numerical covering set | 1 | 1 | 1 | 8 | 3 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 1 | 1 | 2 | 1 | 3 | 1 | 1 | full numerical covering set | 2 | 2 | 1 | full numerical covering set | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 7 | 2 | 1 | 2 | 2 | 3 | 1 | 1 | 1 | 1 | 1 | 5 | 2490 | 1 | 3 | 1 | 1 | 7 | 2 | 1 | 2 | 1 | 1 | 16 | 1 | 2 | 5 | 1 | 2 | 1 | 2 | 3 | 1 | 10 | 204 | 3 | 6 | 1 | 1 | 2 | 1 | 1 | 1 | 9 | 4 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 422 | 1 | 1 | 1 | full numerical covering set | 2 | 1 | 1 | 8 | 1 | 1 | 19849 | 3 | 1 | 2 | 8 | 4 | 1 | 7 | 1 | 5 | 1 |
22 | 22 | 1 | 6 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 15 | 3 | 4 | 1 | 1 | 1 | 1 | 7 | 1 | 1 | 2 | 1 | (>33554430) | 18 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 4 | 1 | 1 | 1 | 9 | 2 | 2 | 1 | 1 | 1 | 3 | 1 | 5 | 1 | 1 | 2 | 1 | 3 | 1 | 1 | 2 | 1 | 13 | 1 | 9 | 16 | 1 | 1 | 1 | 3 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 3 | 20 | 1 | 2 | 1 | 2 | 8 | 1 | 22 | 21 | 2 | 1 | 1 | 4 | 2 | 7 | 1 | 1 | 3 | 5 | 1 | 1 | 1 | 2 | 2 | 1 | 4 | 1 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 2 | 1 | 6 | 1 | 3 | 1 | 4 | 2 | 4 | 15 | 3 | 1 | 7 | 1 | 1 | 1 | 4 | 2 | 26 |
23 | 23 | 4 | 1 | 3 | 342 | full numerical covering set | 1 | full numerical covering set | 119215 | 2 | 3762 | 1 | 1 | 152 | 5 | 1 | 4 | full numerical covering set | 7 | full numerical covering set | 1 | 8 | 14 | 3 | 2 | 4 | 1 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 6 | 2 | 3 | 1 | 2 | 95 | 1 | 6 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 4 | 1 | 8 | 6 | 1 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 8 | 5 | 1 | NA | 1 | 3 | 2 | full numerical covering set | 8 | full numerical covering set | 365239 | 2 | 4 | 3 | 1 | 2 | 5 | 1 | 8 | full numerical covering set | 2 | full numerical covering set | 575 | 16 | 474 | full numerical covering set | 1 | 2 | 1 | 9 | 12 | full numerical covering set | 5 | full numerical covering set | 341 | 12 | 2 | 1 | 9 | 2 | 39 | 3 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 40 | 1 | 350 | 2 | 1 | 1 | 50 | full numerical covering set | 3 | full numerical covering set | 23 | 6 | 2 | 5 | 1 | 96 | 14049 | 3 | 3118 | full numerical covering set | 4 | full numerical covering set | 3 |
24 | 24 | 2 | 2 | 1 | 1 | 12 | 2 | 3 | 1 | 5 | 1 | 2 | 42 | 1 | 1 | 2 | 4 | 1 | 1 | 1 | 4 | 2 | 1 | 2 | 1 | 1 | 6 | 7 | 1 | 5 | 3 | 10 | 1 | 2 | 7 | 2 | 6 | 2 | 3 | 1 | 2 | 10 | 1 | 1 | 5 | 1 | 2 | 1 | 1 | 5 | 1 | 6 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 21 | 6 | 132 | 1 | 4 | 11 | 2 | 34 | 1 | 1 | 1 | 17 | 2 | 3 | 1 | 1 | 1 | 2 | 8 | 1 | 9 | 5 | 36 | 17 | 1 | 1 | 4 | 2 | 1 | 1 | 1 | 1 | 6 | 17 | 2 | 3 | 1 | 6 | 3 | 5 | 1 | 2 | 6 | 3 | 1 | 3 | 1 | 2 | 4 | 1 | 1 | 2 | 22 | 1 | 1 | 59 | 4 | 8 | 17 | 1 | 1 | 11 | 2 | 9 | 1 | 3 | 1 | 2 | 1 | 3 |
25 | 25 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 9 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 3 | 1 | 1 | 3 | 2 | 4 | 1 | 2 | 1 | 1 | 4 | 518 | 2 | 1 | 1 | 1 | 1 | 1 | 9 | 1 | 1 | 3 | 7 | 1 | 2 | 2 | 2 | 1 | 5 | 1 | 48 | 2 | 3104 | 2 | 1 | 1 | 1 | 6 | 1 | 15 | 1 | 3 | (>10000) | 1 | 4 | 1 | 2 | 1 | 27 | 1 | full numerical covering set | 304 | 1 | 20 | 1 | 2 | 1 | 6 | 6 | 2 | 815 | 1 | 1 | 4 | 1 | 1 | 5 | 5 | 1 | 4 | 1 | 2 | 1 | 1 | full numerical covering set | 53 | 10 | 3 | 1 | 12 | 6 | 9 | 1 | 1 | 93 | 1 | 1 | 1 | 2 | 2 | 198 | 1 | 2 | 9 | 1 | 24 | 1 | 3 | 1 | 3 |
26 | 26 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 35 | 1 | 2 | 3 | 1 | 68 | 1 | 2 | 6 | 1 | 8 | 24 | 1 | 1 | 4 | 1 | 5 | 2 | 1 | 2 | 10 | 1 | 3 | 54 | 318071 | 1 | 2 | 1 | 1 | 2 | 37 | 2 | 6 | 3 | 1 | 6 | 1 | 1 | 6 | 1 | 1 | 4 | 1 | 1 | 2 | 3 | 1 | 2 | 5 | 1 | 2 | 1 | 5 | 4 | 1 | 2 | 62 | (>1000000) | 2 | 2 | 3 | 1 | 4 | 1 | 1 | 26 | 5 | 1 | 4 | 1 | 1 | 8 | 1 | 16 | 4 | 7 | 3 | 10 | 1 | 6 | 4 | 1 | 1 | 14 | 1 | 2 | 32 | 1683 | 3 | 16 | 1 | 1 | 2 | 9 | 3 | 6 | 1 | 1 | 28 | 3 | 2 | 2 | 1 | 1 | 6 | 1 | 1 | 12 | 17 | 23 | 2 | 1 | 1 | 6 | 3 | 3 | 4 | 1 | 4 | 2 | 1 |
27 | 27 | full algebraic covering set | 2 | 1 | 1 | 2 | 1 | 3 | full algebraic covering set | 10 | 1 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 1 | 1 | 1 | 112 | 4 | 1 | 2 | 2 | 4 | full algebraic covering set | 1 | 54 | 1 | 1 | 3 | 7876 | 1 | 3 | 4 | 2 | 1 | 13 | 5 | full numerical covering set | 7 | full numerical covering set | 2 | 8 | 4 | 487 | 1 | NA | 2 | 1 | 32 | 2 | 1 | 1 | 3 | 4 | 1 | 1 | 1 | NA | 3 | 21 | full algebraic covering set | 244 | 1 | 19 | 8 | full numerical covering set | 2 | full numerical covering set | 2 | 4 | 1 | 1 | 1 | 10 | 10 | 3 | 1 | 4 | 2 | 5 | 1 | 2 | 9 | 43 | 1 | 2 | 7 | 1 | 4 | 12 | 1 | 1 | 1 | full numerical covering set | 1 | full numerical covering set | 2 | 12 | 6 | 1 | 5 | 2 | 16 | 55 | 1 | 6 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 4 | 1 | 1 | 2 | 4 | 6 | NA | 2 | full numerical covering set | 8 | full numerical covering set | 1 |
28 | 28 | 1 | 1 | 7 | 1 | 1 | 3 | 1 | 4 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 2 | 2 | 5 | 1 | 2 | 1 | 1 | 3 | 1 | 3 | 1 | 10 | 17 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 8 | 1 | 4 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 4 | 10 | 2 | 6 | 1 | 1 | 4 | 282 | 2 | 1 | 1 | 2 | 2 | 1 | 3 | 1 | 3 | 1 | 2 | 3 | 1 | 4 | 1 | 13 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 6 | 1 | 25 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 4 | 2 | 2 | 1 | 3 | 1 | 6 | 1 | 3 | 1 | 12 | 2 | 13 | 4 | 1 | 1 | 2 | 5 | 1 | 148 | 6 | 4 | 6 | 1 | 1 | 2 | 43 | 22 | 1 | 1 | 1 | 3 |
29 | 29 | 2 | 1 | 2 | full numerical covering set | 1 | 4 | full numerical covering set | 1 | 1 | 4 | full numerical covering set | 1 | 6 | 3 | 1 | 2 | 3 | 1 | full numerical covering set | 1 | 2 | 2 | 1 | 3 | 2 | full numerical covering set | 2 | 2 | 1 | 5 | full numerical covering set | 1 | 1 | full numerical covering set | full numerical covering set | 6 | 2 | 1 | 1 | 2 | full numerical covering set | 2 | 2 | 1 | 1 | 24 | 5 | 1 | full numerical covering set | 1 | 2 | 10 | 1 | 1 | full numerical covering set | full numerical covering set | 1 | 2 | full numerical covering set | 1 | 6 | 1 | 1 | full numerical covering set | 3 | 20 | 2 | 1 | 35 | 348 | full numerical covering set | 1 | 2 | 5 | 10 | 16 | 1 | 2 | full numerical covering set | 37 | 2 | 2 | full numerical covering set | 1 | 4 | full numerical covering set | 1 | 228 | 1 | 1 | 26 | 3 | 2 | full numerical covering set | 3 | 2 | 2 | 1 | full numerical covering set | 6 | full numerical covering set | 6 | full numerical covering set | 1 | 1 | 258 | full numerical covering set | 3 | full numerical covering set | 1 | full numerical covering set | 10 | 7 | 1 | 2 | full numerical covering set | 1 | 2 | 1 | 6 | 6 | 1 | 16 | full numerical covering set | 103 | 2 | full numerical covering set | 25 |
30 | 30 | 1 | 1 | 3 | 6 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1023 | 2 | 1 | 3 | 2 | 9 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 4 | 1 | 1 | 4 | 31 | 2 | 12 | 1 | 1 | 1 | 2 | 2 | 8 | 1 | 1 | 1 | 4 | 1 | 1 | 38 | 1 | 3 | 2 | 1 | 3 | 1 | 5 | 2 | 1 | 8 | 4 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 5 | 1 | 6 | 17 | 8 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 3 | 644 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 17 | 1 | 14 | 1 | 6 | 11 | 3 | 1 | 1 | 2 | 1 | 3 | 1 | 11 | 1 | 3 | 36 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 8 | 1 | 1 | 1 | 5 | 1 | 9 | 1 | 3 | 2 | 6 | 6 | 2 |
31 | 31 | (>524287) | 2 | 1 | 2 | 1026 | 4 | 1 | 1 | 24 | 1 | 3 | 1 | 2 | 1 | 1 | 2 | 4 | 2 | 1 | 5 | 2 | 1 | 3 | 1 | 10 | 1 | 1 | 3 | 2 | 5 | (>524286) | 1 | 62 | 1 | 1 | 1 | 64 | 3 | 49 | 5 | 4 | 1 | 21053 | 2 | 12 | 1 | 9 | 1 | 4 | 4 | (>10000) | 1 | 4 | 3 | 1 | 2 | 6 | 4 | 1 | 1 | 2 | 1 | 1 | 1 | 8 | 3 | 1 | 3 | 22 | 2 | 1 | 2 | (>6000) | 6 | 1 | 1 | (>6000) | 2 | 3 | 1 | 2 | 1 | 3 | 1 | 26 | 22 | 9 | 1 | 2 | 1 | 15 | 11 | 2 | 5 | 1 | 18 | 58 | 1 | 1 | 9 | 6 | 1 | 1 | 3 | 4 | 10 | (>6000) | 3 | 6 | 3 | 1 | 33 | 178 | 2 | 1 | 2 | (>6000) | 1 | 3 | 2 | 118 | 3 | 1 | 1 | 2 | 1 | 7 | 5 |
32 | 32 | full algebraic covering set | 3 | 1 | (>1717986917) | 3 | 1 | 4 | 1 | 13 | full numerical covering set | 1 | 2 | 2 | 1 | 2 | (>3435973835) | 3 | 1 | 2 | 1 | 1 | 4 | full numerical covering set | 1 | 2 | 63 | 4 | 10 | 1 | 1 | 12 | full algebraic covering set | 5 | 10 | 3 | 1 | 2 | 1 | 1 | 2 | 43 | 3 | full numerical covering set | 1 | 12 | 8 | 1223 | 37 | 2 | 1 | 5 | 16 | 1 | 3 | 44 | full numerical covering set | 2 | 2 | 1 | 2 | 8 | 43 | 1 | 2 | 1 | 1 | 4 | 5 | 2 | 6 | 1 | 6 | 6 | 3 | 2 | full numerical covering set | 19 | 2 | 2 | 7 | 1 | 2 | 1 | 1 | 2 | 1 | 1579 | 8 | full numerical covering set | 160 | 52 | 39 | 2 | (>1440000) | 1 | 5 | 4 | 1 | 1 | 4 | 9 | 64 | 6 | 1 | 1 | 4 | 6715 | 1 | full numerical covering set | 3 | 12260 | 2 | 1 | 3 | 4 | 5 | 2 | 2 | 9 | 7 | 64 | full numerical covering set | 1 | full numerical covering set | 1 | 4 | 36 | (>1717986916) |
33 | 33 | 1 | 1 | 3 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 593 | 1 | 2 | 1 | 1 | 9 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 7 | 2 | 1 | 1 | 2 | 1 | 1 | 252 | 2 | 7 | 1 | 6 | 23615 | 2 | 8 | 2 | 1 | 1 | 5 | 4 | 1 | 1 | 3 | 1 | 51 | 1 | 19 | 1 | 2 | 2 | 1 | 1 | 4 | 1 | 10 | 1 | 3 | 3 | 81 | 347 | 1 | 2 | 1 | (>12000) | 4 | 2 | 1 | 1 | 1 | 2 | 3 | 1 | 5 | 2 | 7 | 1 | 2 | 5 | 1 | 16 | 3 | 8 | 24 | 1 | 10 | 6 | 1 | 1 | 1 | 6 | 2 | 12 | 1 | 1 | 6 | 2 | 1 | 1 | 14 | 10 | 1 | 1 | 1 | 1 | 14 | 2 | 1 | 1 | 1 | 70 | 2 | 3 | 4 | 1 | 3 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 |
34 | 34 | 4 | 1 | 1 | 1 | 12 | full numerical covering set | 1 | 2 | 1 | 1 | 310 | 1 | 1 | 5 | 2 | 8 | 1 | 1 | 1 | 1 | 2 | 6 | 2 | 31 | 2 | 28 | 1 | 1 | full numerical covering set | 1 | 2 | 3 | 1 | 3 | 1 | 2 | 1 | 1 | 1 | 1 | full numerical covering set | 1 | 2 | 1 | 1 | 6 | 6 | 5 | 1 | 2 | 42 | 4 | 1 | 1 | 1 | 4 | 12 | 1 | 23 | 3 | 16 | 7 | 1 | full numerical covering set | 1 | 4 | 6 | 2 | 1 | 1 | 4 | 2 | 2 | 1 | 1 | full numerical covering set | 2 | 14 | 1 | 1 | 2 | 1 | 1 | 1 | 10 | 8 | 1 | 5 | 1 | 1 | 892 | 604 | 1 | 5 | 2 | 2 | 1 | 1 | full numerical covering set | 2 | 84 | 1 | 2 | 75 | 1 | 6 | 1 | 1 | 1 | 6 | full numerical covering set | 7 | 2 | 1 | 1 | 2 | 3 | 1 | 3 | 2 | 8 | 33 | 2 | 1 | 7 | 8 | 6 | 1 |
35 | 35 | 2 | 1 | 1 | 42 | full numerical covering set | 1 | full numerical covering set | 1 | 4 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 8 | 2 | 249 | 2 | 2 | 1 | 7 | 2 | full numerical covering set | 1 | full numerical covering set | 9 | 20 | 2 | 1 | 2 | 10 | 115 | 1 | 16 | full numerical covering set | 1 | full numerical covering set | 9 | 4 | 56062 | 1 | 10 | 2 | 1 | 5 | 8 | full numerical covering set | 8 | full numerical covering set | 219 | 2 | 6 | 1 | 4 | 2 | 3 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 4 | 2 | 3 | 1 | 6 | 1 | 5 | 6 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 6 | 1 | 1 | 18 | 1 | 1 | 6 | full numerical covering set | 2 | full numerical covering set | 1 | 2 | 2 | 1 | 1 | 16 | 3 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 3 | 4 | 4 | 1 | 25 | 2 | 1 | 23 | 2 | full numerical covering set | 96 | full numerical covering set | 1673 | 2 | 4 | 1 | 1 | 6 | 1 | 1 | 2 | full numerical covering set | 2 | full numerical covering set | 1 |
36 | 36 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 2 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 8 | 1 | 1 | 3 | 2 | 2 | 1 | 3 | 16 | 1 | 12 | 1 | 8 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 3 | 1 | 5 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 10 | 18 | 1 | 1 | 1 | 1 | 4 | 2 | 1 | 1 | 1 | 1 | 3 | 2 | 6 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 3 | 2 | 1 | 6 | 4 | 1 | 1 | 1 | 2 | 1 | 37 | 1 | 2 | 1 | 1 | 1 | 3 | 104 | 1 | 1 | 1 | 1 | 6 | 3 | 1 | 1 | 7 | 3 | 1 | 30 | 2 | 1 | 3 | 1 | 12 | 1 | 1 | 2 | 1 | 2 | 5 | 2 | 1 | 11 | 3 | 172 |
37 | 37 | 1 | 3 | 6 | 1 | 1 | 1 | 3 | 2 | 1 | 2 | 4 | 3 | 1 | 1 | 1 | 1 | 12 | 461 | 5310 | 2 | 1 | 2 | 1 | 3 | 1 | 1 | 2 | 2 | 1 | 3 | 5 | 4 | 6 | 1 | 6 | 9 | (>524286) | 2 | full numerical covering set | 1 | 7 | 3 | 2 | 1 | 2 | 56 | 3 | 1 | 1 | 1 | 32 | 1628 | 1 | 1 | 1 | 1 | 8 | 4 | 6 | 1 | 1 | 2 | NA | 38 | 1 | 20 | 4 | 1 | 1 | 1 | 1 | 120 | 6 | 2 | full numerical covering set | 4 | 2 | 1 | 3 | 5 | 1 | 7 | 4 | 1 | 3 | 1 | full numerical covering set | 1 | 3 | 1 | 12 | 2 | 1 | (>1000000) | 1 | 4 | 4 | 16 | 18 | 1 | 5 | 6 | 1 | 1 | 60 | 1 | 4 | 2 | 1 | 40 | 5 | 6 | 389 | 1 | 2 | 5 | 3 | 2 | 1 | 1 | 1 | 2 | 16 | 7 | 1 | 1 | NA | 1 |
38 | 38 | (>16777215) | 2729 | 3 | 10 | 1 | 1 | 4 | 7 | 21 | 4 | 1 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 3 | 2 | 1 | 3 | 2 | 3 | 10 | full numerical covering set | 3 | 4 | 2 | 1 | 2 | 1528 | 1 | 2 | 62 | 3 | 1 | 16 | (>16777214) | 1 | 6 | 1 | 1 | 8 | 5 | 3 | 8 | 1 | 2 | 6 | 1 | 143 | 16 | full numerical covering set | 1 | 4 | 1 | 12 | 10 | 1 | 1 | 92 | 1 | 4 | full numerical covering set | 47 | NA | 2 | 43 | 3 | 2 | 1 | 2 | 40 | 87 | 1 | 2728 | 1 | 6 | 2 | 1 | 1 | 2 | 31 | 14 | 2 | 15 | 1 | 6 | 3 | 7 | NA | full numerical covering set | 2 | 82 | 3 | 80 | 2 | full numerical covering set | 7 | 20 | 15 | 1 | full numerical covering set | 3 | 796 | NA | NA | 7 | 14 | 1 | 1 | 2 | 71 | 2 | 40 | 1 | 1 | 2 | 1 | 1 | 8 | 1 | 4 | 2 | 1 | 1 | 2 | 3 |
39 | 39 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | full numerical covering set | 4 | full numerical covering set | 2 | 2 | 1 | 1 | 2 | 10 | 1 | 831 | 5 | 2 | 1 | 1 | 1 | 2 | 8 | 5 | 1 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 1 | 1 | 4 | 2 | 1 | 1 | 3 | 2 | 4 | 1 | 167 | 4 | 18 | 9 | 1 | full numerical covering set | 1 | full numerical covering set | 1 | 4 | 345 | 5 | 2 | 10 | 5 | 1 | 1 | 6 | 7 | 1 | 5 | 2 | 22 | 1 | 8 | full numerical covering set | 1 | full numerical covering set | 3 | 6 | 1 | 69 | 2 | 4 | 8 | 25 | 1 | 28 | 74 | 1 | 5 | 22 | 2 | 1 | 1 | full numerical covering set | 1 | full numerical covering set | 8 | 132 | 1 | 7 | 32 | 248 | 1 | 1 | 3 | 42 | 8 | 15 | 1 | 8 | 6 | 1 | 246 | full numerical covering set | 2 | full numerical covering set | 2 | 2 | 1 | 1 | 130 | 20 | 1 | 5 | 35 | 6 | 1 | 1 | 389 | 2 | 4 | 1 | 1 |
40 | 40 | 1 | 3 | 2 | 5 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 3 | 1 | 1 | 1 | 5 | 1 | 2 | 2 | 1 | 1 | 7 | 3 | 1 | 2 | 5 | 2 | 1 | 8 | 6 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 6 | 1 | 1 | 1 | 8 | 6 | 2 | 2 | 4 | 1 | 1 | 4 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 14 | 1 | 1 | 2 | 3 | 8 | 1 | 1 | 1 | 1 | 7 | 2 | 3 | 28 | 2 | 1 | 4 | 3 | 2 | 3 | 1 | 1 | 2 | 8 | 8 | 1 | 21 | 3 | 1 | 1 | 8 | 1 | 3 | 5 | 1 | 9 | 1 | 1 | 1 | 2 | 14 | 9 | 1 | 1 | 4 | 1 | 25 | 2 | 11 | 1 | 2 | 1 | 2 | 1 | 3 | 138 | 1 | 6 | 1 | 18 |
41 | 41 | 16 | 1 | 1 | 6 | 1 | 3 | 2 | full numerical covering set | 1 | 2 | 1 | 2 | full numerical covering set | 3 | full numerical covering set | 4 | 1 | 1 | 2 | 1 | 1 | 68 | full numerical covering set | 1 | 2 | 7 | 1 | (>10000) | full numerical covering set | 1 | full numerical covering set | 11 | 1 | full numerical covering set | 1 | 4 | 1056 | 1 | 4 | 80 | 15 | 1 | 38 | 5 | 10 | 10 | 1 | 3 | 2 | full numerical covering set | 1 | 10 | 1 | 1 | full numerical covering set | 1 | 142 | 2 | 3 | 6 | 4 | 1 | 5 | 2 | 3 | 1 | 90 | 1 | 1 | 2 | full numerical covering set | 1 | 2 | 1 | 1 | full numerical covering set | 1 | 4 | full numerical covering set | 3 | 7 | 818 | 47 | 3 | 2 | 1 | 36 | NA | 13 | 1 | 72 | full numerical covering set | 1 | 76 | 1 | 2 | full numerical covering set | 1 | 6 | 12 | 3 | 27 | 16 | 1 | 1 | 2 | 1 | 2 | 6 | 3 | 1 | 2 | full numerical covering set | 2 | 18 | 9 | 1 | full numerical covering set | full numerical covering set | 4 | 2 | 1 | 2 | 42 | 29 | 1 | full numerical covering set | 3 |
42 | 42 | 1 | 2 | 1 | 2 | 1 | 3 | 4 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 13 | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 14 | 1 | 4 | 4 | 1 | 1 | 420 | 2 | 1 | 14 | 1 | 1 | (>16777214) | 2 | 2 | 3 | 1 | 14 | 1 | 18 | 140 | 1 | 6 | 2 | 1 | 1 | 5 | 2 | 1 | 5 | 1 | 97 | 67 | 1 | 1 | 1 | 8 | 2 | 1 | 3 | 3 | 8 | 3 | 1 | 1 | 4 | 4 | 2 | 2 | 1 | 1 | 1 | 3 | 4 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 5 | 4 | 3 | 4 | 1 | 1 | 1 | 3 | 1 | 3 | 2 | 9 | 10 | 42 | 6 | 1 | 1 | 2 | 4 | 1 | 1 | 1187 | 6 | 1 | 1 | 2 | 5 | 4 | 1 | 1 | 1204 | 3 | 7 | 61 |
43 | 43 | 8 | 1 | 171 | 1 | 38 | 1 | 1 | 2 | 498 | 1 | 1 | 2 | 580 | 2 | 23 | 3 | 34 | 3 | 1 | 1 | full numerical covering set | 1 | full numerical covering set | 1 | 8 | 1 | 1 | 3 | 6 | 1 | 833 | 21 | 2 | 6 | 1 | 1 | NA | 3 | 1 | 1 | 24 | 2 | 7 | 1 | 2 | 1 | 1 | 6 | 6 | 2 | 1 | 1 | 2 | 27 | 3 | NA | 2 | 2 | 3 | 6 | 4 | 1 | 35 | 1 | full numerical covering set | 4 | full numerical covering set | 2 | 6 | 1 | 1 | 4 | 2 | 1 | 1 | 1 | 146 | 2 | 1 | 2 | 4 | 1 | NA | 1 | 2 | 11 | 1 | 2 | 2 | 2 | 3 | 1 | 10 | 2 | 17 | 1 | 6 | 7 | 1 | 2 | 12 | 30 | NA | 2 | 2 | 4 | NA | 4 | full numerical covering set | 3 | full numerical covering set | 1 | 6 | 1 | 1 | 1 | 6 | 12 | 1 | 5 | 24 | 2 | 11 | 1 | 2 | 1 | 1 | 4 |
44 | 44 | 16 | 1 | 9 | full numerical covering set | 15 | 2 | 2 | 1 | 1 | 6 | full numerical covering set | 3 | 2 | 1 | 1 | 2 | 47 | 2 | full numerical covering set | 1 | 8 | 4 | 1 | 59 | 382 | full numerical covering set | 4 | 8 | 1 | 1 | 2 | 1 | 1 | full numerical covering set | 7 | 2 | 2 | 3 | 11 | 4 | full numerical covering set | 1 | 4 | 15 | 2 | 2 | 1 | 1 | full numerical covering set | 791 | 2 | 2 | 1 | 1 | 994 | full numerical covering set | 4 | 2 | 3 | 25 | 4 | 1 | 3 | full numerical covering set | 1 | NA | 72 | 3 | 1 | 128 | full numerical covering set | 1 | 8 | 1 | 1 | 2 | 1 | 1 | full numerical covering set | 183 | 2 | 28 | NA | 1 | 6 | full numerical covering set | 2 | 2 | 1 | 2 | 4 | 1 | 1 | full numerical covering set | 277 | 16 | 2 | 7 | 1 | 2 | full numerical covering set | 5 | NA | 13 | 1 | 32 | 25 | 2 | full numerical covering set | 7 | 4 | 4 | 1 | 3 | NA | full numerical covering set | 3 | 124 | 1 | 1 | 4 | 23 | 1 | full numerical covering set | 1 | 20 | 14 | 1 |
45 | 45 | 1 | 2 | 28 | 1 | 1 | 1 | 1 | 8 | 3 | 1 | 2 | 1 | 1 | 1 | 55 | 2 | 1 | 1 | 2 | 3 | 1 | 1 | 3 | 18522 | 1 | 1 | 2 | 2 | 1 | 5 | 1 | 1 | 1 | 1 | 22 | 1 | 2 | 3 | 1 | 1 | 2 | 36 | 2 | 2 | 1 | 2 | full numerical covering set | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 3 | 184 | 2 | 1 | 1 | 1 | 25 | 39 | 1 | 4 | 1 | 1 | 4 | 71 | 3 | 11 | 1 | 230 | 1 | 1 | 1 | 5 | 3 | 1 | 1 | 2 | 2 | 1 | 5 | 1 | 3 | 1 | 1 | full numerical covering set | 2 | 1180 | 1 | 1 | 3 | 2 | 1 | 2 | 4 | 1 | 1 | 15 | 2 | 10 | 2 | 4 | 1 | 1 | 1 | 1 | 5 | 1 | 1439 | 16 | 4 | 1 | 4 | 3 | 1 | 3 | 5 | 22 | 1 | 13 | 4 | 1 | 2 |
46 | 46 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 6 | 1 | 1 | 1 | 2 | 4920 | 1 | 3 | 1 | 1 | 1 | 1 | 3 | 1 | 2 | 4 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 8 | 6 | 1 | 65 | 130 | 1 | 1 | 2 | 3 | 3 | 2 | 4 | 7 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 19 | 5 | 1 | 2 | 81 | 1 | 3 | 5 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 8 | 2 | 1 | 2 | 1 | 1 | 1 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 264 | 5 | 2 | 2 | 3 | 4 | 446 | 6 | 1 | 2 | 1 | 13 | 1 | 2 | 9 | 8 | 1 | 1 | 1 | 1 | 4 | 2 | 1 | 1 | 1 | 1 | 7 | 1 | 57 | 4 | 2 | 1 | 5 | 1 | 1 | 3 | 2 | 3 | 1 | 12 |
47 | 47 | 8 | 175 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | full numerical covering set | 2 | 2 | 5 | 3 | 40 | 1 | 1 | full numerical covering set | full numerical covering set | 8 | full numerical covering set | 1 | 8 | 2 | 1 | 1 | 6 | 1 | NA | 60 | full numerical covering set | 2 | full numerical covering set | 3 | 90 | NA | 1 | 1 | 2 | 1 | 5 | 60 | full numerical covering set | 2 | full numerical covering set | 1 | 2 | 16 | 7 | 2 | 2 | 1 | 7 | 132 | full numerical covering set | 1 | full numerical covering set | 1 | 176 | 4 | 3 | 2 | 36 | 3 | 1 | 142 | full numerical covering set | 7 | full numerical covering set | 1 | full numerical covering set | 4 | 1 | 4 | 2 | 5 | 3 | 4 | full numerical covering set | 4 | full numerical covering set | 1 | 388 | 12 | 1 | 2 | 20 | 3 | 7 | 4 | full numerical covering set | 1 | full numerical covering set | 799 | 4 | 174 | 3 | 1 | 2 | full numerical covering set | 7 | 2 | full numerical covering set | 35 | full numerical covering set | 1 | 4 | 8 | 91 | 1 | 2 | 1 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 11 | 258 | full numerical covering set | 1 | 1 | 4 | full numerical covering set | NA | 22 | full numerical covering set | 1 | full numerical covering set | NA |
48 | 48 | 4 | 1 | 3 | 1 | 1 | 27 | 1 | 2 | 1 | 2 | 7 | 1 | 3 | 1 | 6 | 1 | 4 | 3 | 2 | 105 | 1 | 20 | 3 | 1 | 1 | 1 | 1 | 2 | 133042 | 10 | 1 | 4 | 19 | 7 | 3 | (>500000) | 1 | 2 | 1 | 3 | 29 | 1 | 754 | 1 | 1 | 1 | 2 | 3 | 6 | 2 | 11 | 2 | 15 | 1 | 3 | 1 | 314 | 2 | 1 | 2 | 4 | (>500000) | 8 | 2 | 1 | 1 | 1 | 4 | 1 | 1 | 116 | 1 | 2 | 2 | 2 | 3 | 1 | 14 | 1 | 2 | 1 | 42 | 107 | 10 | 4 | 1 | 1 | 2 | 1 | 53 | 3 | 2 | 6 | 1 | 1 | 7 | 1 | 3 | 2 | 1 | 3 | 2 | 2 | 1 | 2 | NA | 4 | 18 | 1 | 1 | 11 | 8 | 6 | 2 | 1 | 1 | 6 | 15 | 2 | 4 | 3 | 1 | 8 | 1 | 11 | 9 | 234 | 3 |
49 | 49 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 3 | 1 | 26 | 2 | 2 | 1 | 2 | 10 | 1 | 1 | 1 | 2 | 62 | 39 | 1 | 165 | 1 | 2 | 1 | 1 | 9 | 1 | full numerical covering set | 1 | 1 | 1 | 23 | 4 | 1 | 9 | 1 | 13 | 4 | 4 | 176 | 1 | 1 | 48 | 2 | 2 | 1 | 6 | 64 | 1 | 1 | 1 | 1 | 2 | 10 | 1 | 1 | 2 | 6 | 1 | 1 | 1 | 6 | 36 | 1 | 9 | 3 | 2 | 2 | 1 | 1 | 17 | 1 | 68 | 22 | 1 | full numerical covering set | 1 | 2 | 1 | 2 | 9 | 1 | 46 | 2 | 12 | 1 | 2 | 2 | 5 | 3 | 91 | 1 | 662 | 1 | 1 | 1 | 2 | 108 | 1 | 1 | 1 | 7 | 16 | 20 | 2 | 1 | 2 | 2 | 2 | 16 | 3 | 1 | 16 | 4 | 1 | 23 | 1 | 126 | 1 | 4 | 3 | 1 | 24 | 1 | 11 |
50 | 50 | (>16777215) | 1 | 1 | 10 | 1 | 1 | 516 | 1 | 2 | 4 | 9 | 1 | 2 | 1 | 1 | full numerical covering set | 3 | 10 | 2 | 5 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 3 | 28 | 1 | 683 | 2 | full numerical covering set | 1 | 956 | 1 | 1 | 10 | 1 | 80 | 6 | 53 | 1 | 2 | 1 | 3 | 2 | (>16777214) | 1 | 6 | 3 | 3 | 4 | 1 | 1 | 14 | 135 | 1 | 2 | 1 | 4 | 2 | 1 | 1 | full numerical covering set | 9 | 22 | 6 | 3 | 2 | 6 | 1 | 3 | 2 | 1 | 3 | 72 | 1 | 1 | 6 | 1 | 1 | 2 | full numerical covering set | NA | 4 | 1 | 1 | 2 | 3 | 1 | NA | 1 | 1 | 6 | 5 | 1 | 28 | 1 | 1 | 2 | 1 | 2 | 40 | 1 | 2 | 42 | 1 | 4 | 2 | 1 | 1 | 2 | 1 | 1 | full numerical covering set | 3 | 56 | 750 | 1 | 1 | 4 | 5 | 1 | 10 | 23 |
51 | 51 | 2 | 1 | 3 | 1 | 6 | 1 | 1 | 1 | 2 | 3 | 1 | 1 | 4 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 4 | 1 | 1 | 5 | full numerical covering set | 1 | full numerical covering set | 1 | 6 | 1 | 11 | 2 | 6 | 1 | 3 | 2 | 2 | 4881 | 1 | 12 | 80 | 1 | 1 | 1 | 182 | 1 | 3 | 32 | 2 | 1 | 1 | 183 | 2 | 12 | 5 | 1 | 4 | 4 | 3 | 1 | 310 | 1 | 1 | 1 | 2 | 74 | 1 | 1 | 4 | 1 | 1 | 1 | 18 | 1 | 1 | 1 | full numerical covering set | 2 | full numerical covering set | 14 | 2 | 52 | 7 | 1 | 2 | 3 | 5 | 3 | 4 | 1 | 5 | 76 | 2 | 44 | 1 | 34 | 80 | 1 | 1 | 1 | 18 | 5 | NA | 1 | 2202 | 1 | 1 | 2 | 2 | 7 | 13 | 4 | 10 | 1 | NA | 3 | 6 | 2 | 1 | 1 | 92 | 2 | 1 | 4 | 2 | 1 | 75 | 1 |
52 | 52 | 1 | 3 | 1 | 10 | 2 | 1 | 15 | 1 | 2 | 1 | 1 | 3 | 1 | 2 | 4 | 5 | 4 | 1 | 13 | 1 | 1 | 30 | 2 | 1 | 1 | 7 | 2 | 10 | 1 | 3 | 1 | 2 | 1 | 3 | 1 | 1 | 2 | 1 | 1 | 1 | 33 | 4822 | 1 | 2 | 1 | 1 | 3 | 2 | 1 | 17 | 15 | (>16777214) | 1 | 6 | 1 | 1 | 114 | 2 | 15 | 1 | 3 | 4 | 2 | 1 | 4 | 1 | 2 | 2 | 11 | 3 | 1 | 3 | 1 | 1 | 5 | 3 | 2 | 1 | 10 | 4 | 7 | 2 | 1 | 1 | 1 | 9 | 3 | 4 | 1 | 3 | 1 | 12 | 2 | 1 | 2 | 1 | 4 | 1 | 5 | 23 | 1 | 4 | 9 | 2 | 3 | 1175 | 2 | 5 | 1 | 1 | 9 | 14 | NA | 10 | 1 | 1 | 3 | 13 | 1 | 4 | 4 | 3 | 1 | 1 | 5 | 1 | 4 | 430 |
53 | 53 | 8 | 1 | 4 | (>1670000) | 9 | 143 | full numerical covering set | 227183 | 1 | 16 | full numerical covering set | 2 | 28 | 1 | 1 | 4 | NA | 11 | NA | 1 | 1 | 4 | 3 | 3 | 4 | 3 | 14 | 2 | 1 | 18 | full numerical covering set | 1 | 2 | 2 | full numerical covering set | 4 | 6 | 3 | 13 | 2 | 1 | 2 | 2 | 1 | 1 | 32 | NA | 7 | 2 | 19 | 24 | 960 | 7 | 2 | full numerical covering set | 1 | 1 | 10 | full numerical covering set | 1 | 3140 | (>305000) | 23 | 2 | 1 | 1 | 2 | NA | 2 | 4 | 1 | 5 | 4 | 1 | 12 | 184 | 1 | 2 | full numerical covering set | 1 | 27 | 2 | full numerical covering set | 11 | 14 | 3 | 1 | 2 | 141 | 1 | 72 | 1 | 2 | 30 | 1 | 44 | 2 | 3 | 14 | 6 | 1 | 1 | full numerical covering set | 281 | 13 | 4 | full numerical covering set | 4 | 66 | 519 | 1 | 60 | 3 | 1 | NA | 7 | 6 | 50 | 21 | 1 | 4 | 37 | 8 | 78 | 1 | 1 | full numerical covering set | 115 |
54 | 54 | 2 | 1 | 1 | 3 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 4 | 7 | 1 | 1 | 30 | 1 | 2 | 103 | 2 | full numerical covering set | 2 | 6 | 1 | 2 | 4 | 1 | 2 | 1 | 1 | 2 | 3 | 1 | full numerical covering set | 2 | 86 | 1 | 1 | 5 | 1 | 2 | 1 | 5 | 1 | 2 | 4 | 1 | 1 | 1 | 5 | 4 | 1 | 15 | 1 | 1 | 12 | 1 | 2 | 1 | 16 | 16 | 2 | 2 | 1 | 1 | 20 | 12 | 1 | 1 | 4 | 2 | 1 | 1 | 311 | 1 | full numerical covering set | 1 | 6 | 9 | 3 | 102 | 9 | 1 | 5 | 1 | 2 | 7 | 2 | full numerical covering set | 1 | 32 | 1 | 1 | 1 | 2 | 6 | 5 | 3 | 1 | 24 | 6 | 9 | 1 | 5 | 1 | 6 | 1 | 8 | 3 | 7 | 4 | 2 | 8 | 39 | 1 | 8 | 7 | 1 | 1 | 1 | 2 | 2 | 2 | 17 | 31 | 6 | 4 | 4 |
55 | 55 | (>524287) | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 9 | 1 | 1 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 1 | 1 | 1 | 18 | 92 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 12 | 1 | 1 | 54 | 1 | 1 | (>1000000) | 4 | 2 | 3 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 4 | 1 | 1 | 3 | 6 | 2 | 563 | 1 | 2 | 1 | (>524286) | 2 | 8 | 1 | 1 | 1 | 4 | 1 | 1 | 2 | 2 | 1 | 3 | 2 | full numerical covering set | 1 | full numerical covering set | 10 | 142 | 18 | 1 | 123 | 2 | 2 | 31 | 1 | 4 | 2 | 1 | 1 | 2 | 8 | 1 | 7 | 2 | 1 | 1 | 2 | 2 | 1 | NA | 1 | full numerical covering set | 1 | full numerical covering set | 1 | 2022 | 2 | 1 | 1 | 552 | 4 | 1 | 2 | 14 | 1 | 5 | 12 | 6 | 1 | 1 | 1 | 6 | 1 | 1 | 4 | 38 | 1 | full numerical covering set | 2 | full numerical covering set | 10 | full numerical covering set | 1 |
56 | 56 | 2 | 1 | 5 | 78 | 1 | 1 | 6 | 1 | 1 | 2 | 1 | 1 | 6 | 1 | 2 | 2 | 1 | 1 | 70 | full numerical covering set | 1 | 2 | 1 | 1 | 2 | 27 | 2 | 4 | 17 | 19 | 4 | 1 | 3 | 34 | 243 | 1 | full numerical covering set | 1 | 394 | 2 | 1 | 2 | 4 | 3 | 1 | (>10000) | 1 | 1 | 8 | 1 | 1 | 6 | 1 | 2 | 4 | 1 | 2 | 2 | 1 | 1 | 2 | 3 | 1 | 10 | 1 | 1 | 2 | 21 | 1 | 8 | 5 | 3 | 2 | 1 | 1 | 18 | full numerical covering set | 11 | 2 | 1 | 6 | 4 | 1 | 1 | 100 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | full numerical covering set | 3 | 2 | 2 | 1 | 1 | 4 | 1 | 7 | 2 | 457 | 1 | 2 | 3 | 3 | 4 | 9 | 1 | 14 | 1 | 1 | 6 | 7 | 1 | 6 | 15 | 2 | 4 | 1 | 17 | 2 | 1 | 1 | 2 | NA |
57 | 57 | 1 | 3 | 1 | 1 | 2 | 5 | 2 | 1 | 1 | 1 | 1 | 3 | 1 | 14955 | 1 | 5 | 2 | 4 | 1 | 1 | 1 | 2 | 2 | 2 | 5 | 1 | 44 | 1 | 1 | 14 | 7 | 2 | 1 | 1 | 1 | 1 | 2 | 5 | 74 | 1 | 1 | 4 | 1 | 3 | 1 | 20 | full numerical covering set | 2 | 2 | 1 | 1 | 4 | 1 | 1 | 2 | 3 | 3 | 1 | 10 | 5 | 9 | 3 | 1 | 7 | 9 | 7 | 2 | 1 | 1 | 2 | 4 | 11 | 1 | 1 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 6 | 2 | 1 | 1 | 1 | 14 | 16 | 7 | 1 | 1 | 7 | 36 | 2 | 1 | 4 | 2 | 2 | 89 | 1 | 1 | 2 | 6 | 2 | 8 | 1 | 6 | 4 | 11 | 1 | 1 | 2 | 1 | 2 | 9 | 9 | NA | 56 | 46 | 1 | 1 | 2 | 1 | 1 | 1 | 8 | 11 | 1 |
58 | 58 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 128 | 4 | 80 | 1 | 2 | 1 | 5 | 2 | 1 | 1340 | 1031 | 1 | 3 | 2 | 1 | 1 | 1 | 4 | 270 | 1 | 3 | 1 | 3 | 1 | 1 | 1 | 1 | 2 | 13 | 3 | 28 | 1 | 6 | 2 | 2 | 7 | 6 | 4 | 1 | 1 | 3 | 2 | 271 | 39 | 1 | 3 | 1 | (>16777214) | 6 | 4 | 1 | 25 | 2 | 2 | 3 | 3 | 8 | 4 | 1 | 3 | 1 | 1 | 132 | 45 | 1 | 1 | 1 | 10 | 1 | 8 | 3 | 25 | 8 | 2 | 1 | 1 | 57 | 8 | 1 | 7 | 1 | 9 | 6 | 3 | 10 | 1 | 2 | 2 | 1 | 1 | 5 | 8 | 4 | 1 | 1 | 1795 | 1 | 2 | 1 | 3 | 4 | 2 | 4 | 9 | 3 | 1 | 37 | 2 | 2 | 1 | 1 | (>14900) | 19 | 1 | 1 | 1 | 61 | 8 |
59 | 59 | 2 | 3 | 1 | full numerical covering set | full numerical covering set | 2 | full numerical covering set | 5 | full numerical covering set | 36 | full numerical covering set | 1 | 88 | 1 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 4 | 15 | 275 | 10 | full numerical covering set | 1 | 2 | full numerical covering set | 4 | full numerical covering set | 1 | NA | full numerical covering set | 1 | 10 | 2 | 1 | 1 | 2 | full numerical covering set | 2 | full numerical covering set | 5 | 10 | 4 | 3 | 1 | full numerical covering set | 1397 | full numerical covering set | 34 | full numerical covering set | 1 | full numerical covering set | full numerical covering set | 4 | 14 | 1 | 1 | 3500 | 1 | 3 | full numerical covering set | full numerical covering set | 12 | full numerical covering set | 1 | full numerical covering set | 2 | full numerical covering set | 4 | 1290 | 15 | 1 | 26 | full numerical covering set | 1 | full numerical covering set | 1 | 14 | 62 | 1721 | 1 | 4 | full numerical covering set | 119 | 2 | full numerical covering set | 4 | full numerical covering set | NA | 4 | full numerical covering set | 1 | 2 | 10 | 1 | 137 | 2818 | full numerical covering set | 2 | full numerical covering set | 3 | NA | 16 | 3 | 1 | full numerical covering set | 1 | full numerical covering set | 8 | full numerical covering set | 239 | full numerical covering set | full numerical covering set | NA | 2 | 1 | 2 | 2 | 17 | 3 | full numerical covering set | full numerical covering set | 4 | full numerical covering set | 1181 |
60 | 60 | 1 | 3 | 1 | 1 | 42 | 2 | 1 | 14 | 1 | 1 | 1 | 2 | 4 | 5 | 2 | 2 | 1 | 5 | 81 | 1 | 8 | 1 | 1 | 3 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 3 | 4 | 1 | 6 | 21 | 7 | 2 | 6 | 2 | 2 | 1 | 1 | 1 | 1 | 44 | 1 | 1 | 2 | 1 | 1 | (>16777214) | 21 | 368 | 36 | 7 | 3 | 4 | 1 | 54 | 2 | 1 | 1 | 2 | 4 | 1 | 2 | 1 | 1 | 5 | 3 | 1 | 1 | 2 | 2 | 3 | 1 | 3 | 9 | 1 | 2 | 5 | 6 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 6 | 3 | 15 | 1 | 2 | 4 | 1 | 1 | 1 | 1 | 12 | 2 | 1 | 4 | 1 | 1 | 3 | 1 | 3 | 17 | 2 | 2 | 11 | 1 | 26028 | 2 | 2 | 1 | 1 | 1 |
61 | 61 | 1 | 1 | 2 | 6 | 3 | 1 | 1 | 1 | 4 | 165 | 6 | 1 | 1 | 11 | 1 | 1 | 1 | 3 | 70 | 3 | 1 | 5 | 1659 | 1 | 16 | 11 | 2 | 1 | 1 | 1 | 3 | 18 | 3 | 2 | 2 | 12 | 1 | 1 | 5 | 1 | 3 | 3 | 2788 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 4 | 2 | 2 | 1 | 1 | 4 | 11 | 1 | 2 | 6 | 1 | 3698 | full numerical covering set | 2 | 1 | 1 | 2 | 3 | 1 | 1 | 5 | 2 | 20 | 4 | 84 | 1 | 5 | 1 | 1 | 1 | 5 | 1 | 58 | 7 | 1 | 2 | 1 | 5 | 1 | 2 | 2 | 1 | 1 | 8 | 93 | 1 | 50 | 1 | 52 | 1 | 3 | 58 | 1 | 2 | 1 | 11 | 2 | 85 | 2 | 1 | 1 | 1 | 2 | 1706 | 2 | 2 | 3 | 4 | NA | 1 | 1 | 9 | full numerical covering set | 4 | 2 | 1 | NA | 4 |
62 | 62 | (>16777215) | 43 | 12 | 2 | 1 | 1 | 308 | full numerical covering set | 3 | 66 | 1 | 27 | full numerical covering set | 67 | 6 | 2580 | 7 | 1 | 2 | 3 | 1 | 248 | 1 | 1 | 40 | 1 | NA | 10 | full numerical covering set | 1 | 4 | 139 | 22 | full numerical covering set | 3 | 84 | 8 | 1 | 3 | 48 | 1 | 3 | 2 | 1 | 1 | 4 | NA | 1061 | NA | full numerical covering set | 1 | 2 | 29 | 3 | full numerical covering set | 3 | 10 | 2 | 1 | 1 | 20 | (>16777214) | 1 | 2 | 3 | 1 | 18 | 1 | 95 | 414 | full numerical covering set | 3 | 2 | 221 | 1 | full numerical covering set | 3 | 8 | 10 | 7 | 1 | 50 | 1 | 1 | 2 | 1 | 2 | 6 | 1 | 1 | 120 | full numerical covering set | 8 | 2 | 17 | 1 | full numerical covering set | 5 | 2 | 4 | 1 | 7 | 4 | 1 | 2 | 32 | 967 | 2 | 2 | 983 | 1 | 8 | full numerical covering set | 1 | 2 | 1 | 3 | full numerical covering set | 51 | NA | 32 | 3 | 8 | 42 | 5 | 5 | 96 | 1 |
63 | 63 | (>524287) | 1 | 7 | 2 | 2 | 1 | 21 | 8 | 2162 | 1 | 1 | 1 | 2 | 1 | 7 | 1 | 34 | 2 | 1 | 22 | 4 | 4 | 3 | 2 | 2 | 5 | 5 | 3 | 54 | 1 | 1 | 1 | 396 | 1 | 1 | 1 | 4 | 79 | 1 | 1 | 8 | 1 | 3 | 2 | 2 | 369 | 1 | 24 | 2 | 3 | 1 | 46 | 26 | 6 | 1 | 1 | 2 | 2 | 3 | 2 | 4 | 1 | (>524286) | 185 | 2 | 1 | 1 | 3 | 14 | 90 | 1 | 6 | 74 | 1 | 7 | 1 | 44 | 2 | 3 | 13 | 16 | 1 | NA | 2 | 18 | 1 | 1 | 30 | 210 | 2 | 7 | 2 | 2 | 1 | 11 | 7 | 2 | 2 | 1 | 1 | NA | 1 | NA | 1 | 70 | 1 | 1 | 11 | 6 | 2 | 7 | 1 | NA | 5 | 1 | 1 | 2 | 26 | 489 | 1 | 56 | 1 | 63 | 22 | 2 | 3 | 1 | 2 |
64 | 64 | full algebraic covering set | 1 | 1 | 1 | 1 | 2 | 1 | full algebraic covering set | 1 | 1 | 3222 | 1 | 2 | full numerical covering set | 2 | 2 | 3 | 1 | 1 | 1 | 2 | 1 | 1 | 31 | 1 | 2 | full algebraic covering set | 2 | 1 | 6 | 10 | 1 | 1 | 1 | 3 | 2 | 2 | 1 | 3 | 2 | 4 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 7 | full numerical covering set | 1 | 2 | 1 | 1 | 4 | 3 | 7 | 1 | 6 | 2 | 11 | 3 | full algebraic covering set | 2 | 2 | 1 | 1 | 1 | 1 | 10 | 5 | 1 | 1 | 1 | 4 | 9 | 1 | full numerical covering set | 1 | 2 | 3 | 2 | 21 | 1 | 36 | 1 | 3 | 1269 | 1 | 28 | 14 | 1 | 97 | 1 | 6 | 1 | 42 | 1 | 3 | 22 | 1 | 3 | 1 | 2 | 10 | 1 | 3 | 1 | 1 | 2 | 8 | 1 | 1 | 2 | full numerical covering set | 1 | 410 | 1 | 1 | 2 | 2 | 1 | 1 | full algebraic covering set | 4 | 2 | 1 |
65 | 65 | 2 | 1 | 2 | 2 | 1 | 5 | 2 | 1 | 1 | full numerical covering set | 1 | 684 | 26 | 1 | 1 | 2 | 5 | 1 | 6 | 1 | 1 | 2 | full numerical covering set | 8 | 2 | 3 | 1 | 4 | 191 | 1 | 2 | 1 | 3 | 2 | 1 | 1 | 2 | 323 | 1 | 858 | 2209 | 1 | full numerical covering set | 1 | 2 | 30 | 1 | 1 | 4 | 1 | 1 | 128 | 1 | 1 | 116 | full numerical covering set | 2 | 6 | 3 | 2 | 12 | 77 | 2 | 946 | 1 | 3 | 2 | 1 | 1 | 2 | 1 | 10 | 2 | 31 | 3 | full numerical covering set | 1 | 2 | 4 | 17 | 1 | 42 | 59 | 5 | 2 | 1 | 3 | 206 | full numerical covering set | 1 | 74 | 1 | 1 | 2 | 1 | 64 | 2 | 3 | 1 | 96 | 5 | 22 | 4 | 1 | 1 | 32 | 3 | 3 | full numerical covering set | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 3 | 2 | full numerical covering set | 1 | 262 | 7 | 1 | full numerical covering set | 3 |
66 | 66 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | 1 | 7 | 1 | 2 | 1 | 1 | 5 | 1 | 3 | 1 | 2 | 11 | 1 | 1 | 1 | 1 | 1 | 10 | 1 | 3 | 2 | 1 | 2 | 4 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 8 | 1 | 1 | 3 | 1 | 1 | 2 | 15 | 7 | 8 | 1 | 1 | 1 | 2 | 6 | 1 | 1 | 6 | 1 | 1 | 2 | 3 | 3 | 1 | 1 | 3 | 2 | 2 | 3 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | 3 | 13 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 3 | 1 | 1 | 4 | 6 | 1 | 1 | 1 | 2 | 1 | 3 | 1 | 1 | 31 | 3 | 1 | 1 | 2 | 1 | 3 | 1 | 1 | 1 | 10 | 8 | 1 | 9 | 1 | 2 | 1 | 6 | 3 |
67 | 67 | (>524287) | 6 | 1 | 1 | 6 | 4532 | 135 | 1 | 2 | 1 | 209 | 135 | 2 | 1 | 1 | 3 | (>10000) | 2 | 21 | 2 | (>10000) | 3 | 1 | 1 | 2 | full numerical covering set | 23 | 1 | 6 | 1 | 1 | 3 | full numerical covering set | 3203 | full numerical covering set | 4 | 2 | 186 | 1 | 3 | NA | 4 | 1 | 1 | 4 | 1 | NA | 1 | 54 | 1 | 1 | 4 | 4 | 2 | 5 | 9 | 6 | 2 | 1 | 1 | NA | 218 | 1 | 1 | 2 | 1 | (>524286) | 24 | 2 | 1 | 5 | 4 | 30 | 2 | 3 | 1 | 10 | 1 | 1 | 1 | 100 | 2 | 5 | 29 | 2 | 16 | 15 | 1 | 2 | 2 | 1 | 8 | 2 | 1 | 1 | 3 | 2 | 1 | 5 | 1 | full numerical covering set | 3 | full numerical covering set | 19 | 2 | 1 | 7 | 1 | 6 | 3 | 1 | 2 | 88 | 1 | 1 | 1 | 18 | 1 | 411 | NA | 36 | 10 | NA | 3 | 14 | 1 | 3 | 2 |
68 | 68 | (>16777215) | 1 | 2 | 6 | 29 | 1 | 2 | 319 | 1 | 6 | 3947 | 656921 | 26 | 1 | 1 | 36 | (>1000000) | 2 | 6 | 1 | 1 | full numerical covering set | 7 | 2 | 2 | 7 | 40 | 22 | 1 | 3 | 108 | 149 | 3 | 2 | 1 | full numerical covering set | 262 | 127 | 2 | 114 | 1 | 1 | 2 | 19 | 1 | NA | full numerical covering set | 2 | NA | 215 | 1 | 20 | 3 | 1 | 4 | full numerical covering set | 1 | 4 | 1 | 46 | NA | 1 | 4 | 2 | 1 | 1 | 18 | (>16777214) | 2 | 22 | 547 | 4 | NA | 3 | 1 | 1064 | 1 | 8 | 2 | 1 | 4 | 42 | 3 | 3 | 180 | 1 | 8 | 6 | 1 | 1 | full numerical covering set | 1 | 6 | 14 | 3 | 1 | 56 | 3 | 1 | 2 | 1 | 2 | 4 | 17 | 4 | 4 | NA | 830 | 2 | 1 | 1 | 212 | 11 | 1 | 98 | full numerical covering set | 5 | 34 | 1 | 1 | 3912 | 1 | 3 | 1230 | 1 | 29 | 4 | NA |
69 | 69 | 2 | 1 | 2 | 1 | 1 | full numerical covering set | 9 | 20 | 1 | 1 | 2 | 1 | 1 | 1 | full numerical covering set | 2 | 1 | 3 | full numerical covering set | 1 | 2 | 2 | 1 | 1 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 3 | full numerical covering set | 3 | 1 | 1 | 2 | 206 | 1 | 27 | 1 | 4 | full numerical covering set | 3 | 4 | 1 | 1 | 12 | 1 | 1 | 5 | 6 | 2 | 5 | 25 | 1 | 9 | 16 | 544 | 1 | full numerical covering set | 2 | 1730 | 7 | 1 | full numerical covering set | 1 | 2 | 2 | 10 | 1 | 1 | full numerical covering set | 1 | 2 | 1 | 2 | full numerical covering set | 1 | 2 | 79 | 1 | 6 | 1 | full numerical covering set | 13 | 2 | 10 | 3 | 1 | 3 | 1 | 14 | 4 | 1 | 51 | 57 | 2 | 1 | 1 | full numerical covering set | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 172 | 7 | 1 | 1 | full numerical covering set | 4 | 2 | 1 | 2 | 44 | 4 | 1 | 1 | 2 | 18 | 1 | 6 | 3 | 5 | 4 | full numerical covering set | 8 |
70 | 70 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 28 | 1 | 1 | 1 | 7 | 1 | 20 | 1 | 2 | 1 | 3 | 20 | 1 | 1 | 1 | 2 | 3 | 2 | 1 | 7 | 2 | 1 | 4 | 2 | 2 | 1 | 1 | 8 | 1 | 1 | 1 | 1 | 1 | 320 | 7 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 3 | 1 | 2 | 1 | 1 | 11 | 2 | 3 | 1 | 1 | 1 | 2 | 1 | 4 | 1 | 1 | 555 | 1 | (>16777214) | 1 | 40 | 21 | 4 | 2 | 2 | 3 | 3 | 1 | 1 | 4 | 1 | 4 | 1 | 2 | 5 | 1 | 4 | 3934 | 1 | 1 | 4 | 2 | 1 | 2 | 3 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 9 | 1 | 5 | 2 | 1 | 2 | 3 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 13 | 1 | 3 | 23 | 2 | 9 | 1 | 1 | 1 | 2 | 10 |
71 | 71 | 2 | 3 | 1 | 22 | full numerical covering set | 1 | full numerical covering set | 1 | 836 | 2 | 5 | 1 | 14 | 1 | 3 | 2 | full numerical covering set | 1 | full numerical covering set | 17 | 6 | 8 | 27 | 2 | 6 | 1 | 1 | 6 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 6 | 35 | 1 | 4 | 1 | 1 | 2506 | full numerical covering set | 2 | full numerical covering set | 15 | 84 | 22 | 1 | 1 | 6 | 5 | 1 | 2 | full numerical covering set | 2 | full numerical covering set | 5 | 2 | 10 | 1 | 1 | 10 | 265 | 1 | 274 | full numerical covering set | 8 | full numerical covering set | 3 | 2 | 4 | 1 | 1 | 4 | 1 | 1 | 26 | full numerical covering set | 3 | full numerical covering set | 503 | 2 | 10 | 1 | 1 | 2 | 7 | 1 | 2 | full numerical covering set | 4 | full numerical covering set | 19 | 6 | 2 | 1 | 2 | 10 | 1 | 581 | 4 | full numerical covering set | 1 | full numerical covering set | 1 | 60 | 20 | 1199 | 1 | 6 | 3 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 90 | 2 | 3 | 1 | 2 | 1 | 107 | 2 | full numerical covering set | 4 | full numerical covering set | 23 |
72 | 72 | 1 | 2 | 14 | 3 | 7 | 1 | 10 | 1 | 6 | 12 | 32 | 28 | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 2 | 7 | 3 | 1 | 51 | 1 | 1 | 2 | 1 | 1 | 1 | 12 | 102 | 1 | 14 | 1 | 1 | 4 | 2 | 3 | 21 | 1 | 6 | 2 | 1 | 3 | 1 | 6 | 1 | 1 | 2 | 1 | 12 | 4 | 1 | 2 | 3 | 12 | 1 | 2 | 2 | 3 | 427 | 2 | 2 | 2 | 9 | 2 | 12 | 1 | 1 | 1 | (>16777214) | 120 | 10 | 3 | 4 | 3 | 17 | 1 | 2 | 8 | 24 | 28 | 3 | 1 | 4 | 8 | 1 | 118 | 1 | 1 | 2 | 22 | 5 | 1 | 13 | 8 | 1 | 1 | 24 | 3 | 4 | 1 | 1 | 1 | 23 | 27 | 42 | 2 | 3 | 1 | 3 | 8 | 1 | 8 | 1 | 4 | 41 | 2 | 1 | 1 | 6 | 8 | 1 | 1 | 11 | 3 | 4 |
73 | 73 | 1 | 4 | 4 | 1 | 1 | 1 | 2 | 28 | 2 | 3 | 1 | 1 | 23 | 21369 | 1 | 40 | 9 | 2 | 1 | 1 | 1531 | 1 | 2 | 1 | 10 | 1 | 4 | 2 | 1 | 2 | 1 | 2 | 6 | 3 | 1 | 7 | 6 | 6 | 350 | 3 | 1 | 1 | 2 | 2 | 4 | 1 | full numerical covering set | 27 | 1 | 1 | 53 | 1 | 2215 | 1 | 2 | 3 | 1 | 2 | 1 | 19 | 1035 | 1 | 1671 | 1 | 2 | 3 | 1 | 24 | 5 | 42 | 8 | 5 | 3 | 1 | 48 | 7 | 1 | 4 | 5 | 7 | 1 | 1 | 1564 | 1 | 2 | 3 | 4 | 2 | 6 | 1 | 8 | 1 | 2 | 1 | 3 | 21 | 1 | 2 | 2 | 3 | 1 | 9 | 2 | 1 | 1 | 5 | 20 | 6 | 6 | 1 | 1 | 6 | 2 | 3 | 1 | 1 | 1 | 31 | 2 | 1 | 3 | 1 | 55 | 5 | 8 | 1 | 5 | 2 |
74 | 74 | 2 | 1 | 1 | full numerical covering set | 3 | 4 | 2 | 1 | 65 | 138 | full numerical covering set | 2 | 1046 | 21 | 2 | 8 | 1 | 662 | full numerical covering set | 1 | 2 | 2 | 209 | 1 | 26 | full numerical covering set | 1 | 4 | 3 | 1 | 1216 | 33 | 71 | full numerical covering set | 1 | 2 | 2 | NA | 1 | 2 | full numerical covering set | 1 | 126 | 1 | 1 | 2 | 3 | 4 | full numerical covering set | 1 | 182 | 316 | 1 | 11 | 2 | full numerical covering set | 1 | 2 | 3 | 1 | 50 | 11 | 1 | full numerical covering set | 5 | 10 | 38 | 3 | 1 | 2 | full numerical covering set | 1 | 42 | 1 | 2 | 92 | NA | 3 | full numerical covering set | 465 | 10 | 24 | 1 | 1 | 142 | full numerical covering set | 4 | 26 | 3 | 1 | 4 | 129 | 1 | full numerical covering set | 3 | 2 | 2 | 1 | 3 | 2 | full numerical covering set | 1 | NA | 25 | 4 | 42 | 1 | 1 | full numerical covering set | 3 | 2 | 110 | 1 | 3 | 6 | full numerical covering set | 83 | 2 | 1 | 2 | NA | 1 | 1 | full numerical covering set | 139 | 8 | 14 | 1 |
75 | 75 | 32 | 1 | 1 | 2 | 48 | 2 | 1 | 1 | 6 | 1 | 3071 | 57 | 2 | 1 | 1 | 1 | 128 | 57 | 3 | 2 | 2 | 4 | 1 | 1 | 2 | 1 | 1 | 129 | 2 | 1 | 1 | 2 | 18 | 1 | 11 | 1 | full numerical covering set | 1 | full numerical covering set | 1 | NA | 4 | 1 | 1 | 12 | 36 | 3 | 2 | 106 | 2 | 1 | 15 | 4 | 1 | 1 | 1 | 2 | 2 | 1 | 3 | 4 | 1 | 31 | 1 | 2 | 1 | 3 | 1 | 14 | 4 | 1 | 2 | 12 | 4 | 31 | 1 | 10 | 1 | 1 | 2 | 14 | 1 | 7 | 1 | 94 | 1 | 23 | 17 | 24 | 2 | 1 | 2 | 2 | 3 | 5 | 54 | 2 | 1 | 17 | 2 | 150 | 3 | 1 | 7 | 2 | 1 | 1 | 1 | 2 | 1 | 27 | 3 | full numerical covering set | 7 | full numerical covering set | 9 | 4 | 4 | 1 | 1 | 32 | 1 | 23 | 3 | 2 | 2 | 35 | 1 |
76 | 76 | 16 | 2 | 1 | 1 | 1 | 1 | 2 | 4 | 1 | 1 | 2 | 2 | 3 | 1 | 6 | 1 | 1 | 2 | 6 | 3 | 1 | 16 | 12 | 1 | 1 | 1 | 1 | 1 | 84 | 1 | 1 | 1 | 4 | full numerical covering set | 1 | 26 | 2 | 3 | 1 | 1 | 1 | 4 | full numerical covering set | 1 | 4 | 5 | 6 | 13 | 1 | 4 | 1 | 18 | 2 | 1 | 3 | 26 | 2 | 1 | 9 | 1 | 1 | 1 | 1 | NA | 5 | 3 | 2 | 1 | 1 | 2 | 74 | 2 | 3 | 3 | 1 | 15 | 1 | 2 | 1 | 1 | 4 | 2 | 17 | 1 | 4 | 1 | 3 | 1 | 4 | 1 | 1 | 2 | 1 | 1 | 22 | 1 | 5 | 53 | 12 | 2 | 3 | 1 | 1 | 15 | 7 | 26 | 1 | 1 | 1 | 5 | full numerical covering set | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 2 | full numerical covering set | 27 | 36 | 1 | 2 | 1 | 2 | 10 | 8 |
77 | 77 | (>524287) | 3 | 2 | 6098 | 1 | 1 | full numerical covering set | 1 | 1 | 4 | full numerical covering set | 3 | 1758 | full numerical covering set | 5 | 4 | 35 | 1 | 2 | 3 | 1 | 2 | 1 | 2 | full numerical covering set | 1 | 4 | 2 | 1 | 1 | full numerical covering set | 11 | 2 | 10 | full numerical covering set | 3 | 4 | 1 | 1 | 2 | 1 | 4 | 2 | 1 | 1 | 20 | 7 | 1 | 750 | 1 | full numerical covering set | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 10 | full numerical covering set | 1 | 4 | NA | 1 | full numerical covering set | 1 | 4 | 228 | 1 | 1 | 2 | 1 | 2 | 4 | 5 | 2 | 828 | (>524286) | 1 | full numerical covering set | 3 | 1 | 2 | full numerical covering set | 1 | 2 | 3 | 7 | 2 | 5 | 3 | 4 | full numerical covering set | 1 | 2 | 3 | 1 | 2 | 1 | 2 | 4 | 1 | 2 | full numerical covering set | 1 | 10 | 12 | full numerical covering set | 1 | 2 | 5 | 1 | 10 | 1 | 1 | 4 | 1 | 3 | 4 | 3 | 1 | 4 | 11 | 4 | 3018 | 1 | 1887 | full numerical covering set | 1 |
78 | 78 | 1 | 1 | 2 | 1 | 3 | 1 | 1 | 2 | 3 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 7 | 1 | 1 | 1 | 8 | 15 | 1 | 1 | 1 | 5 | 2 | 3 | 1 | 4 | 1 | 15 | 1 | 1 | 3 | 1 | 11 | 2 | 1 | 1 | 117 | 4 | 1 | 1 | 20 | 2 | 2 | 1 | 20 | 15 | 1 | 3 | 1 | 1 | 5 | 1 | 4 | 1 | 5 | 1 | 1 | 60 | 1 | 1 | 9 | 1 | 2 | 1 | 5 | 4 | 2 | 30 | 2 | 1 | 3 | 1 | (>16777214) | 1 | 2 | 3 | 1 | 2 | 1 | 4 | 1 | 1 | 3 | 3 | 6 | 8 | 1 | 2 | 1 | 1 | 1 | 2 | 3 | 1 | 2 | 1 | 2 | 51 | 602 | 1 | 1 | 9 | 32 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 2 | 1 | 10 | 1 | 34 | 6 | 2 | 2 | 1 | 1 | 3 |
79 | 79 | 2 | 1 | 875 | 1 | 162 | 2 | 1 | 1 | full numerical covering set | 5 | full numerical covering set | 1 | 32 | 731 | 1 | 8 | 2 | 1 | 1 | 10 | 742 | 2 | 27 | (>200000) | 8 | 508 | 25 | 1 | full numerical covering set | 1 | full numerical covering set | 2 | 42 | 1 | 1 | 2 | 2 | 213 | 3 | 6 | NA | 1 | 1 | NA | 2 | 2 | 1 | 1 | full numerical covering set | 9 | full numerical covering set | 11 | 16 | 3 | 19 | 192 | 26 | 1 | 359 | 2 | 354 | 2 | 25 | 1 | 52 | 6 | 1 | 3 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 1 | 1 | 38 | 6 | 1 | 1 | 11 | 2 | 3 | 1 | 1 | 970 | 2 | 47 | 3 | full numerical covering set | 1 | full numerical covering set | 1 | 30 | 9 | 285 | 6 | 4 | 2 | 1 | 1 | 1770 | 1 | 1 | 5 | 18 | 2 | 1 | 6 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 1 | 3 | 212 | 22 | 1 | 1 | 2 | 2 | 2 | 17 | 3 | 2 | 4 | 7 | 1 |
80 | 80 | 4 | 11 | 1 | 2 | 1 | 3 | 12 | 1 | 2 | 4 | 1 | 2 | 472 | 3 | 1 | 4 | 1 | 2 | 8 | 1 | 2 | 2006 | 5 | 106 | 2 | 1 | 1 | 4 | 25 | 182 | 180 | 3 | 21 | 2206 | 1 | 5 | 24 | 1 | 1 | 158 | 57 | 1 | 2 | 791 | 4 | 44 | 1 | 2 | 4 | 1 | 5 | 6 | 1 | 2 | 356 | 1 | 1 | 10 | 1 | 1 | 20 | 3 | 3 | 2294 | 9 | 1 | 2 | 1 | 1 | 4 | 5 | 4 | 150 | 3 | 7 | 1474 | 21 | 1 | 2 | 3 | 1 | 2 | NA | 4 | 2 | (>250000) | 1 | 214 | 1 | 2 | 10 | (>250000) | 2 | 444 | 3 | 1 | 152 | 1 | 7 | 8 | 1 | 1 | 198 | 3 | 9 | 2 | 3 | 1 | 2 | 9 | 10 | 4 | 1 | 2 | 10 | 1 | 2 | 8 | 1 | 1 | 14 | 5 | 9 | 2 | 5 | 3 | 30 | 465 |
81 | 81 | 1 | 1 | 1 | full algebraic covering set | 3 | 1 | 1 | 2 | 1 | 1 | 1 | 50 | 8 | 1 | 2 | 1 | 15 | 1 | 5 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 10 | 2 | 1 | 1 | 5 | 734 | 1 | 1 | 1 | 1 | 1 | 15 | 1223 | 8 | 236 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 24 | 2 | 3 | 1 | 5 | 1 | 8 | 1 | 1 | 11 | 1 | 3 | full algebraic covering set | 1 | 1 | 2 | 6 | 8 | 2 | 1 | 2 | 1 | 2 | 3309 | 13 | 1 | 4 | 4 | 1 | 3 | 8 | 22 | 1 | 2 | 1 | 1 | 1 | 2 | 4 | 3 | 2 | 1 | 1 | 65 | 2 | 1 | 4 | 1 | 1 | 1 | 1 | 5 | 5 | 1 | 2 | 4 | 3 | 1 | 42 | 4 | 4 | 3 | 1 | 3 | 1 | 3 | 2 | 1 | 1 | 3 | 1 | 4 | 2 | 2 | 4 | 1 | 1 |
82 | 82 | 1 | 2 | 2 | 6 | 1 | 3 | 4 | 1 | 1 | 1 | 4 | 107 | 9 | 1 | 1 | 3 | 12 | 6 | 1 | 1 | 1 | 12 | 2 | 2 | 3 | 1 | 2 | 1 | 6 | 6 | 1 | 4 | 1 | 1 | 3 | 1 | 2 | 1 | 2 | 18 | 4 | 2 | 1 | 1 | 1 | 5 | 47 | 4 | 1 | 1 | 3 | 7 | 22 | 3 | 2 | 1 | 12 | 4 | 1 | 18 | 1 | 79 | 1 | 7 | 1 | 1 | 44 | 213 | 1 | 1 | 1 | 2 | 1 | NA | 1 | 3 | 2 | 1 | 2 | 6 | 12 | 3 | 1 | 78 | 1 | 1 | 3 | 1322 | 1 | 8 | 3 | 2 | 9 | 191 | 3 | 1 | 2 | 12 | 2 | 6 | 3 | 2 | 1 | 1 | 8 | 1 | 2 | 6 | NA | 3 | 1 | 3 | 1 | 1 | 1 | 8 | 11 | 1 | 1 | 6 | 1 | 1790 | 5 | 1 | 8 | 1 | 2 | 1 |
83 | 83 | (>524287) | 1 | (>8000) | 5870 | full numerical covering set | 1 | full numerical covering set | full numerical covering set | 6 | 2 | 1 | 1 | full numerical covering set | 1 | full numerical covering set | 348 | full numerical covering set | 10 | full numerical covering set | 3 | 12 | 4 | full numerical covering set | 1 | 2 | 191 | 1637 | 6 | full numerical covering set | 20 | full numerical covering set | 1 | 4 | full numerical covering set | 1 | 4 | 2 | 15 | 1 | 104 | full numerical covering set | 6 | full numerical covering set | 71 | 2 | NA | 1 | 19 | 2 | full numerical covering set | 75 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 10 | 99 | 6 | 32 | 1 | 43 | 98 | full numerical covering set | 1 | full numerical covering set | 331 | full numerical covering set | 2 | full numerical covering set | 37 | 106 | 1 | 757 | full numerical covering set | full numerical covering set | 2 | full numerical covering set | 39 | 680 | 2 | (>524286) | 5 | 22 | 205 | 13 | 10 | full numerical covering set | 5 | full numerical covering set | full numerical covering set | 2 | 506 | 1 | 4 | full numerical covering set | 3 | full numerical covering set | 4 | full numerical covering set | 1 | full numerical covering set | NA | full numerical covering set | 4 | 1 | 3 | 2 | 33 | 3 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 4 | full numerical covering set | 27 | 2 | 12 | full numerical covering set | 3 | 6 | full numerical covering set | 1 | full numerical covering set | 19 |
84 | 84 | 2 | 4 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 5 | 2 | 1 | 1 | 47 | 6 | full numerical covering set | 1 | 8 | 1 | 2 | 14 | 6 | 1 | 1 | 2 | 4 | 1 | 2 | 1 | 1 | 2 | 1 | 43 | 1 | 90 | 10 | 1 | 9 | 329 | 1 | 2 | 1 | 1 | 1 | 3 | 4 | 4 | 3 | NA | 1 | 50 | 12 | 2 | 3 | 1 | 2 | 1 | 4 | 1 | 4 | 56 | 1 | 2 | NA | 25 | 170 | 1111 | 19 | full numerical covering set | 1 | 2 | 2 | 1 | 1 | 1 | 74 | 1 | 1 | 1 | 5 | 6 | 1 | 6 | 1 | 9 | 4 | 1 | 1 | 1 | 1 | 10 | 75 | 8 | 47 | 2 | 34 | 2 | 1 | 1 | 3 | full numerical covering set | 2 | 1026 | 1 | 1 | 8 | 2 | 2 | 1 | 1 | 4 | 5 | 7 | 155 | 1 | 14 | 1 | 17 | 9 | 2 | 28 | 71 | 1 | 9 | 1 | 6 | 2 | 1 |
85 | 85 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 6 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 2 | 57 | 5 | 1 | 1 | 3 | 1 | 2 | 2 | 1 | 3 | 1 | 1 | 1 | 4 | 7 | 4 | 1 | 12 | 11 | 1 | 2 | 1 | 1 | 62 | 2 | 1 | 1 | 5 | 3 | 1 | 3 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 4 | 1 | 1 | 1 | 3 | 1 | 125 | 2 | 2 | 12 | 1 | 1586 | 1 | 1 | 7 | 5 | 2 | 3 | 1 | 2 | 3 | 1 | 3 | 1 | 6 | 4 | 1 | 1 | full numerical covering set | 1 | 2 | 1 | 24 | 2 | 9 | 6 | 1 | 1 | 6 | 1 | 2 | 1 | 2 | 2 | 17 | 1 | 1 | 1 | 28 | 1 | 5 | 3 | 1 | 1 | 1 | 2 | 2 | 23 | 1 | 1 | 165 | 2 | 2 | 1 | 6 | 2 | 2 | 1 | 1 | NA |
86 | 86 | (>16777215) | 1 | 2 | 6 | 1 | 40 | 12 | (>1000000) | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 17 | 1 | 6 | 1 | 2 | 2 | 1 | 23 | 2 | 1 | 4 | full numerical covering set | 1 | 34 | 128 | 1 | 1 | 58 | 1 | 7 | 2 | 83 | 2 | 156 | 1 | 1 | 14 | 1 | 3 | 16 | 463 | 1 | 2 | 5 | 2 | 30 | 3 | 1 | 10 | 1 | 1 | 454 | full numerical covering set | 2 | 42 | 1 | 1 | 1478 | 1 | 3 | 20 | 1 | 1 | 2 | 3 | 3 | 222 | 29 | 1 | 4 | 565 | 1 | 16 | 35 | 1 | 4 | 313 | 2 | 30 | (>16777214) | 2 | 1298 | 1 | 1 | 8 | 3 | 2 | 14 | 1 | 4 | 2 | 1 | 426 | 2 | 857 | 3 | NA | 1 | 37 | 12 | 1 | 3 | 2 | 1 | 1 | 6 | 1 | 2 | full numerical covering set | 5 | 6 | 28 | 3 | 1 | 2 | 5 | 3 | 6 | 35 | 1 | 2 | 11 |
87 | 87 | 16 | 2 | 1 | 1 | 6 | 1 | 7 | 112 | 2 | 3 | 1 | 1214 | 2 | 2 | 1 | 4 | 16 | 1 | 1 | 1 | full numerical covering set | 6 | full numerical covering set | 1 | 2 | 15 | 115 | 1 | 2 | 4 | 3 | (>1000000) | 2612 | 13654 | 1 | 8 | 262 | 1 | 1 | 6 | 4 | 2 | 1 | 5 | 10 | 1 | 27 | 1 | 2 | 23 | 5 | 3 | 2 | 7 | 1 | 2176 | 14 | 4 | 3 | 2 | NA | 2 | 1 | 1 | full numerical covering set | 1 | full numerical covering set | 13 | full numerical covering set | 1 | 1 | 3 | 4 | 2 | 5 | 23 | 758 | 2 | 5 | 1 | NA | 3 | 9 | 1 | 2 | 3 | 15 | 2 | NA | 4 | 31 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 7 | 38 | NA | 27 | 1 | 1 | 2 | 4 | 39 | 1 | full numerical covering set | 2 | full numerical covering set | 2 | 4 | 3 | 1 | 1 | 6 | 1 | 3 | 35 | 880 | 4 | 1 | 1 | 10 | 5 | 1067 | 2 |
88 | 88 | 1 | 1 | 4 | 1 | 2 | 7 | 1 | 1094 | 2 | 1 | 3 | 9 | 2 | 83 | 1 | 1 | 1 | 2 | 2 | 1 | 3 | 2 | 3 | 1 | 2 | full numerical covering set | 1 | 2 | 9 | 8 | 1 | 6 | 14 | 14 | 14 | 1 | 1 | 3 | 1 | 8 | 20 | 1 | 2 | 1 | 3 | 1 | 18 | 56 | 1905 | 3 | 16 | 4 | 2 | 2 | 488 | NA | 1 | 2 | 15 | 1 | 3 | 4 | 2 | 2 | 1 | 7 | 1 | 3 | 1 | 2 | 1 | 1 | 4 | 3 | 3 | 1 | 5 | 8 | 5 | 1 | 1 | 6 | 4 | 1 | 1 | 3 | 3022 | 3 | 2 | 2 | 1 | 1 | 2 | 1 | 3 | 8 | 1 | 2 | 1 | 3 | 1 | 8 | 2 | 2 | 1 | 5 | NA | 7 | 5 | 3 | 1 | 1 | 2 | 7 | 1 | 28 | 170 | 568 | 1 | 2 | 3 | NA | 2 | 6 | 11 | 4 | 1 | 4 |
89 | 89 | (>524287) | 1 | 1 | full numerical covering set | 1 | 2 | 6 | 5 | 1 | 288 | full numerical covering set | 1 | 2 | 3 | 1 | NA | 1 | 4 | full numerical covering set | 7 | 2 | 2 | full numerical covering set | 1 | 2 | full numerical covering set | 1 | 12 | 1 | 1 | full numerical covering set | 3 | 3 | full numerical covering set | 15 | 14 | 2 | NA | full numerical covering set | 10 | full numerical covering set | 1 | 2 | 1 | 1 | 4 | 1 | 1 | full numerical covering set | 1 | 4 | 12 | 9 | 105 | 4 | full numerical covering set | 2 | 10 | 125 | 16 | 4 | 1 | 1 | full numerical covering set | 1 | 2 | 10 | 1 | 5 | 24 | full numerical covering set | 3 | 584 | 5 | 1 | 2 | 3 | 22 | full numerical covering set | 1 | 4 | 1782 | 1 | 1 | 2 | full numerical covering set | 132 | 2 | (>524286) | 1 | 28 | 79 | 1 | full numerical covering set | 3 | 6 | 130 | 425 | 1 | 2 | full numerical covering set | 2 | 52 | 1 | 1 | 4 | 1 | 1 | full numerical covering set | 1 | full numerical covering set | 2 | 7 | 3 | 2 | full numerical covering set | 3 | NA | full numerical covering set | 1 | 2 | 1 | 122 | full numerical covering set | 1 | 4 | full numerical covering set | 1 |
90 | 90 | 2 | 1 | 1 | 2 | 6 | 1 | 1 | 14 | 1 | 2 | 1 | 3 | 1 | 14 | 2 | 4 | 1 | 1 | 6 | 1 | 2 | 6 | 2 | 1 | 1 | 1 | full numerical covering set | 1 | 42 | 5 | 1 | 2 | 1 | 1 | 2 | 4 | 1 | 25 | 1 | 10 | 1 | 2 | 12 | 6 | 1 | 25 | 1 | 687 | 4 | 2 | 1 | 4 | 4 | 1 | 1 | 2 | 38 | 2 | 5 | 4 | 2 | 1 | 5 | full numerical covering set | 1 | 2 | 18 | 1 | 1 | 1 | 10 | 1 | 1 | 1 | 3 | 1 | 175 | 52 | 58 | 6 | 12 | 10 | 77 | 1 | NA | 1 | 3 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | 7 | 1 | 1 | 1 | 4 | 1 | 1 | 1 | 11 | 5 | NA | 16 | 1 | 1 | 1 | 1 | 7 | 6 | 2 | 8 | 3 | 5 | 1 | full numerical covering set | 1 | 2 | 1 | 3 | 1 | 1 | 1 | 4 | 8 | 3 |
91 | 91 | (>524287) | 1 | 1 | 1 | 4 | 1 | 17 | 5 | 36 | 1 | 1 | 1 | 4 | 4 | 1 | 6 | 4 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 4 | 1 | 1 | 1 | 8 | 1 | 5 | 1 | 52 | 1 | 45 | 9 | 12 | 1 | 3 | 2 | 6 | 1 | 7 | 1 | full numerical covering set | 17 | full numerical covering set | 2 | 2 | 63 | 5 | 1 | 10 | 1 | 1 | 1 | 162 | 1 | 1 | 3 | 6 | 2 | 3 | 2 | 16 | 1 | 1 | 1 | 2 | 4 | 1 | 1 | 4 | 1 | 1 | 1 | 2 | 5 | 1 | 1 | 2 | 4 | 1 | 2 | 16 | 1 | 11 | 1 | 140 | 1 | (>524286) | 1 | 8 | 34 | 895 | 1 | 2 | 1 | 7 | 2 | 2 | 1 | 3 | 1 | 34 | 33 | 1 | 1 | 2 | 5 | 1 | 1 | 4 | 89 | 1 | 56 | 2 | 1 | 7 | 3 | 2 | 1 | 45 | 3 | 4 | 1 | 1 | 5 |
92 | 92 | (>16777215) | 3 | 1 | 2 | 1 | 1 | 6 | 109 | 1 | 24 | 1 | 4 | 4 | 1 | 1 | 12 | 59 | 1 | 2 | 1 | 1 | 4 | 5 | 38 | 308 | 1 | 2 | 2 | 47 | 3 | 416 | full numerical covering set | 1 | 158 | 1 | 1 | 16 | 1 | 2 | 1908 | 9 | NA | 54 | 1 | 2 | 40 | 7 | 1 | 2 | 1221 | 5 | 210 | 1 | 1 | 10 | 1 | 4 | 2 | 3 | 1 | full numerical covering set | 87 | 194 | 2 | 1 | 1 | 82 | 1 | 1 | 1084 | 7 | 7 | 2 | 5 | 13 | 8 | 3 | 1 | 130 | NA | 4 | 28 | 1 | 2 | 2 | 9 | 2 | 2 | 3 | 4 | 8 | (>16777214) | 2 | NA | 1 | 13 | 4 | 13 | 1 | 2 | 1 | 3 | 2 | 1 | 1 | 56 | NA | 4 | 1914 | 63 | 1 | 28 | NA | 2 | 16 | 1 | 2 | 1930 | 1 | 3 | 8 | NA | 1 | 2 | full numerical covering set | 1 | 2 | 1 |
93 | 93 | 1 | 2 | 156 | 1 | 1 | 520 | 1 | 2 | 1 | 2 | 24 | 1 | 8 | 1 | 1 | 1 | 2 | 24 | 4362 | 1 | 1 | 1 | 7 | 9 | 1 | 4 | 4 | 2 | 15 | 1 | 527 | 16 | 3 | 1 | 2 | 3936 | 1 | 3 | 1 | 3 | 1 | 1 | 2994 | 1 | 2 | 23 | 1 | 2 | 6 | 1 | 16 | 5 | 2 | 1 | 1 | 1 | 2 | 8 | 6 | 1 | 1 | (>100000) | 31 | 1 | 1 | 23 | (>8000) | 4 | 1 | 6 | 41 | 2 | 6 | 1 | 4 | 1 | 1 | 4 | 69 | 2 | 1 | 12 | 8 | 5 | 4 | 5 | (>8000) | 2 | 1 | 4 | 4 | 2 | (>524286) | 3 | full numerical covering set | 1 | 2 | 3 | 2 | 2 | 27 | 2 | NA | 5 | 7 | 1 | 42 | 3 | 3 | 6 | 5 | 2 | 7 | 1 | 240 | 1 | 1 | 2 | 1 | 1 | 7 | 14 | 2 | 3 | 1 | 1 | 1 | 4 |
94 | 94 | 2 | 51 | 1 | 3 | 1 | 2 | 1 | 1 | 263 | 1 | 90 | 1 | 1 | 1 | 2 | 26 | 581 | 1 | 1 | 2 | 2 | 1 | 22 | 7 | 1 | 2 | 1 | 1 | 11 | 12 | 54 | 7 | 3 | 19 | 1 | 4 | 3 | 11 | full numerical covering set | 1 | NA | 13 | 6 | NA | 1 | 8 | 6 | 1 | 3 | 1 | 8 | 1 | 8 | 1 | 1 | full numerical covering set | 2 | 12 | 25 | 1 | 2 | NA | 1 | 83 | 2 | 4 | 1 | 1 | 29 | 1 | 8 | 2 | 1 | 3 | 13 | 2 | 46 | 1 | 183 | 10 | 62 | 2 | 2 | 3 | 2 | 22 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 1 | 6 | 36 | 7 | 13 | 71 | 11 | NA | 2 | 2 | 1 | 1 | 40 | 16 | 6 | 1 | 2 | 70 | 1 | 1 | 3 | 4 | 2 | 3 | 1 | 3 | 2 | NA | 1 | 1 | 1 | 1 | 2 | 1 | 5 |
95 | 95 | 2 | 1 | 9 | 6 | full numerical covering set | 1 | full numerical covering set | 1 | 4 | 42 | 1 | 2 | 16 | 3953 | 3 | 8 | full numerical covering set | 2 | full numerical covering set | 1 | 18 | 10 | 1 | 1 | 8 | 165 | 1 | 4 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 8 | 1 | 2 | 4 | 25 | 3 | 2 | full numerical covering set | 3 | full numerical covering set | 47 | 16 | 8 | 5 | 1 | 26 | 1 | 1 | 12 | full numerical covering set | 5 | full numerical covering set | 11 | 8 | 4 | 1 | 1 | 2 | 7 | 11 | 2 | full numerical covering set | 1 | full numerical covering set | 3 | 10 | 2 | 1 | 1 | 298 | 31 | 5 | 28 | full numerical covering set | 1 | full numerical covering set | 157 | 2 | 6 | 1 | 2 | 10 | 1 | 1 | 2 | full numerical covering set | 5 | full numerical covering set | 1 | 2 | 4 | 1 | 9 | 10 | 1 | 1 | 2 | full numerical covering set | 4 | full numerical covering set | 47 | 1056 | 6 | 5 | 4 | 114 | 3 | 1 | 26 | full numerical covering set | 1 | full numerical covering set | 3 | 30 | 2 | 1 | 16 | 12 | 3 | 1 | 6 | full numerical covering set | 1 | full numerical covering set | 1 |
96 | 96 | 1 | 1 | 3 | 3 | 3 | 1 | 1 | 1 | 1 | 7 | 2 | 1 | 1 | 1 | 2 | 2 | 13 | 2 | 7 | 2 | 1 | 1 | 2 | 1 | 3 | 4 | 1 | 1 | 1 | 8 | 2 | 3 | 1 | 1 | 1 | 1 | 7 | 66 | 65 | 3 | 5 | 5 | 1 | 2 | 2 | 5 | 1 | 4 | 1 | 1 | 223 | 1 | 12 | 16 | 1 | 1 | 2 | 1 | 72 | 22 | 1 | 1 | 3 | 1 | 116 | 1 | 2 | 1 | 3 | 8 | 11 | 3 | 12 | 2 | 1 | 1 | 1 | 1 | 3 | 1 | 2 | 1 | 55 | 1 | 1 | 4 | 1 | 4 | 1 | 1 | 1 | 4 | 1 | 84 | 2 | 31 | 14 | 4 | 1 | 1 | 1 | 3 | 189 | 1 | 3 | 1 | 1 | 1 | 2 | 3 | 1 | 1 | 1 | 3 | 3 | 3 | 893 | 1 | 15 | 7 | 1 | 2 | 15 | 1 | 4 | 1 | 7 | 1 |
97 | 97 | (>524287) | 7 | 1 | 1 | 2 | 3 | 2 | 4 | 3 | 1 | 1 | 2 | 1 | 3 | 2 | 1 | 64 | 1 | 1 | 1 | 1 | 2182 | 9 | 158 | 1 | 224 | NA | 4 | 6 | 6 | 4 | 2 | 1 | 1 | 1 | 20 | 2 | 1 | 2 | 1 | 89 | 3 | NA | 1 | 20 | 1 | 28 | 1 | 1 | 2 | 1 | 3 | 1 | 2 | 13 | 1 | 6 | 2 | 2 | 1 | 3 | NA | 1 | 7474 | 1 | 4 | 3 | 593 | 1 | 1 | 28 | 3 | 1 | 1 | 2 | 29 | 2 | 6 | 1 | 4 | 1 | 3 | NA | 9 | 20 | 5 | 167 | 1 | 1 | 1 | 1 | 4 | 2 | 17 | 2 | 11 | (>524286) | 1 | 38 | 4 | 33 | 2 | 1 | 33 | 2 | 36 | 11 | 1 | 11 | 1 | 1 | 2 | 104 | 1 | 1 | 820 | 2 | 1 | 3 | (>100000) | 1 | 660 | NA | 6 | 17 | 3 | full numerical covering set | 1 |
98 | 98 | (>16777215) | 1 | 2 | 294 | 1 | 32 | 8 | 119 | 1 | full numerical covering set | 19 | 2 | 2 | 1 | 1 | full numerical covering set | 1 | 4 | 6 | 3 | NA | 6 | full numerical covering set | 29 | 2 | 1 | 1 | 2 | 1 | 10 | 4 | 1 | 943 | 2 | 3 | 1 | 114 | full numerical covering set | 1 | 528 | 1 | 2 | full numerical covering set | 7 | 4 | 32 | full numerical covering set | 3 | 2 | 7 | 1 | 4 | NA | 11 | 8 | full numerical covering set | 10 | 2 | 1 | 1 | NA | 13 | 4 | 2 | 71 | 1 | 2 | NA | 1 | 4 | 1 | 1 | 6 | 1 | 1 | full numerical covering set | 1 | 16 | 986 | 1 | 8 | 2 | 31 | 1 | 2 | 1 | 1 | 94 | full numerical covering set | 1 | NA | 577 | 3 | 2 | 1 | 1 | 8 | (>16777214) | 3 | 10 | NA | 5 | 44 | 1 | 2 | 20 | 1 | 2 | full numerical covering set | 1 | 140 | 2 | 1455 | 1 | 6 | 1 | 1 | NA | 15 | 5 | 312 | full numerical covering set | 2 | 2 | 1 | 11 | 78 | full numerical covering set |
99 | 99 | (>524287) | 1 | 1 | 1 | 14 | 6 | 1 | 10 | full numerical covering set | 1 | full numerical covering set | 30 | 6 | 21 | 1 | 2 | 24 | 1 | 1 | 1 | 2 | 1 | 5 | 1 | 106 | 2 | 1 | 15 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 7 | 1 | 2 | 6 | 5 | 1 | 5 | 2 | 1 | 1 | 1 | 4 | 2 | 47 | 1 | full numerical covering set | 1 | full numerical covering set | 2 | 132 | 1 | 1 | 4 | 2 | 1 | 25 | 2 | 10 | 1 | 1 | 1 | 8 | 4 | 3 | 1 | full numerical covering set | 4 | full numerical covering set | 1 | 2 | 7 | 73 | 2 | 2 | 1 | 1 | 2 | 10 | 11 | 1 | 1 | 2 | 2 | 3 | 1 | full numerical covering set | 2 | full numerical covering set | 1 | 8 | 11 | 1 | 12 | 6 | 2 | (>524286) | 1 | 4 | 1 | 1 | 1 | 12 | 4 | 1 | 3 | full numerical covering set | 1 | full numerical covering set | 3 | 2 | 1 | 1 | 2 | 1520 | 1 | 3 | 2 | 8 | 2 | 1 | 1 | 2 | 590 | 1 | 2 |
100 | 100 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 6 | 1 | 1 | 4 | 1 | 3 | 2 | 3 | 4 | 4 | 2 | 1 | 1 | 1 | 168 | 1 | 1 | 13 | 1 | 8 | 1 | 29 | 2 | 1 | 1 | 1 | 3 | 2 | 2 | 4 | 1 | 1 | 2 | 1 | 1 | 5 | 2 | 1 | 1 | 1 | 1 | 1 | 24 | 4 | 1 | full numerical covering set | 1 | 529397 | 1 | 2 | 1 | 1 | 40 | 1 | 2 | 5 | 23 | 1 | 16392 | 1 | 20 | 3 | 1 | 8 | 1 | 94 | 1 | 4 | 1 | 11 | 3 | 2 | 3 | 1 | 7 | 1 | 11 | 2 | 1 | 1 | 4 | 5 | 1 | (>1073741822) | 2 | 2 | 1 | 1 | 1 | 1 | 4 | 21 | 1 | 7 | 4 | 2 | 1 | 3 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 9 | 1 | 1 | 2 | 1 | 2 | 3 |
101 | 101 | 2 | 192275 | 22 | 2 | 3 | 1 | full numerical covering set | 1 | 2 | 1506 | full numerical covering set | 1 | 20 | 1 | 1 | full numerical covering set | 1 | 16 | 66 | 21 | 1 | 2 | 3 | 1 | 38 | 21 | 10 | 2 | 1 | 3 | full numerical covering set | 3 | 1 | 4 | full numerical covering set | 1 | 2 | 7 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 16 | 1 | 62 | NA | 1 | 10 | 10 | 1 | 1 | full numerical covering set | 1 | 1 | 2 | full numerical covering set | 2 | 62 | 1 | 3 | 10 | 5 | 4 | full numerical covering set | 1 | 416 | 16 | 43 | 2 | 172 | 15 | 6 | 26 | 1 | 1 | full numerical covering set | 1 | 1 | 14 | full numerical covering set | 1 | 18 | full numerical covering set | 9 | 10 | 3 | 1 | 2 | 1 | 2 | 42 | 1 | 1 | 2 | 3 | 2 | 2 | 1 | 1 | full numerical covering set | 13 | 1 | 2 | full numerical covering set | 1 | 2 | 9 | 1 | 10 | 11 | 4 | 52 | 1 | 3 | full numerical covering set | 1 | 2 | 2 | 1 | 12 | 8 | 29 | 4 | full numerical covering set | 645 |
102 | 102 | 1 | 2 | 1 | 1 | 2 | 1 | 3 | 2 | 1 | 1 | 1 | 2739 | 1 | 1 | 1 | 3 | 6 | 2 | 2 | 11 | 1 | 3 | 1 | 6 | 1 | 12 | 2 | 1 | 15 | 1 | 1 | 23 | 2 | 1 | 1 | 1 | 46 | 1 | 25 | 8 | 5 | 3 | 8 | 26 | 1 | 50451 | 6 | 305 | 1 | 1 | 25 | 15 | 1 | 6 | 28 | 499 | 2 | 5 | 3 | 1 | 59 | 2 | 1 | 1 | 3 | 1 | 2 | 6 | 1 | 2 | 1 | 19 | 2040 | 1 | 29 | 1 | 10 | 13 | 1 | 1 | 1 | 6 | 1 | 53 | 2 | 8 | 3 | 69 | 9 | 1 | 1 | 2 | 5 | 6421 | 8 | 5 | 2 | 21 | 1 | 1 | 1 | 63 | 5 | 2 | 1 | 3 | 6 | 10 | 1 | 2 | 8 | 10 | 1 | 2 | 1 | 1 | 2 | 1 | 7 | 1 | 1 | (>300000) | 1 | 9 | 2 | 1 | 3 | 52 |
103 | 103 | 4 | 8 | 3 | 2 | 16 | 1 | (>8000) | 7 | 2 | 1 | 81 | 1 | 7010 | 34 | 1 | 1 | 2 | 3 | 3 | 476 | 16 | 1 | 51 | 1 | full numerical covering set | 17 | full numerical covering set | 12 | NA | 2 | 1 | 4 | 4 | 3 | 1 | 1 | 4 | 3 | 29 | 6 | 4 | 1 | 103 | 1 | 2 | 3 | 69 | 3 | 10 | 1 | 3 | 8 | 14 | 1 | 1 | 3 | 16 | 20 | 1 | 2 | 40 | 1 | 1007 | 1739 | 6 | 60 | 5 | 4 | NA | 1 | 2059 | 1 | 6 | 30 | 1 | 1 | full numerical covering set | 4 | full numerical covering set | 2 | 4 | 1 | NA | 1 | 2 | 1 | 1 | 6 | 10 | 1239 | 7 | 2 | 38 | 2 | NA | 19 | NA | 2 | 1 | 1 | 8 | 56 | 3 | 1 | 146 | 7 | NA | 2 | 2 | 3 | 1 | 4 | 1114 | 1 | 1 | 5 | 10 | 64 | 285 | 4 | 4 | 145 | 63 | 6 | 2 | 1 | NA | 302 |
104 | 104 | (>16777215) | 1233 | 1 | full numerical covering set | 1 | full numerical covering set | 8 | full numerical covering set | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 503 | 196 | 14 | 7 | 1 | full numerical covering set | 1 | 8 | 10 | 1 | 9 | 4 | full numerical covering set | 5 | 102 | full numerical covering set | 1 | 30 | 1 | 1 | full numerical covering set | 229 | 4 | 32 | NA | 1 | 4 | full numerical covering set | 5 | 2 | 3 | 2 | 2 | 1 | 1 | full numerical covering set | full numerical covering set | 8 | 40 | 7 | 3 | full numerical covering set | full numerical covering set | 2 | 2 | 3435 | 2 | 10 | 1 | 1 | full numerical covering set | 1 | 4 | 14 | NA | 1 | 36 | full numerical covering set | 1 | 8 | 7 | 4 | full numerical covering set | 1 | 2 | full numerical covering set | 3 | 2 | 2 | 25 | 1 | 20 | full numerical covering set | 1 | 4 | 1 | 3 | 86 | full numerical covering set | 23 | full numerical covering set | 15 | 2 | full numerical covering set | 1 | full numerical covering set | 4 | full numerical covering set | 1 | 2 | (>16777214) | 5 | 4 | 7 | 3 | full numerical covering set | 3 | full numerical covering set | 2 | full numerical covering set | 3 | 2 | full numerical covering set | NA | full numerical covering set | 1 | 218 | 2 | 1 | 3 | full numerical covering set | 1 | 836 | 12 | 1 |
105 | 105 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 10 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 1 | 40 | 1 | 1 | 6 | 1 | 1 | 1 | 1 | 2 | 1 | 5 | 3 | 1 | 1 | 1 | 1 | 675 | 30 | 1 | 348 | 1 | 1 | 4 | 1 | 1 | 2 | 1 | 1 | 5 | 4 | 3 | 1 | 3 | 4 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 4 | 1 | 2 | 1 | 104 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 3 | 3 | 1 | 1 | 5 | 177 | 1 | 3 | 1 | 1 | 1 | 2 | 4 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 3 | 3 | 47 | 2 | 3 | 1 | 1 | 1 | 16 | 12 | 3 | 1 | 2 | 2 | 6 | 1 | 3 | 7 | 28 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | 1 |
106 | 106 | 1 | 1 | 3 | 3 | 8 | 2 | 1 | 1 | 1 | 1 | 1 | 138 | 1 | 2 | 2 | 1 | 1 | 8 | 2 | 1 | 4 | 1 | 2 | 1 | 4 | 1 | 1 | 1 | 3 | 1 | 3 | 2 | 1 | 1 | 1 | 2 | 1 | 40 | 1 | 1 | 2 | 9 | 3 | 1 | 7 | 1 | 4 | 1 | 1 | 3 | 1 | 33 | 1 | 2 | 7 | 1 | 1 | 2 | 38 | 1 | 164 | 1 | 1 | 2 | 1 | 1 | 1 | 3 | 3105 | 4 | 7 | 2 | 16 | 1 | 1 | 1 | 15 | 1 | 987 | 68 | 85 | 1 | 1 | 198 | 1 | 44 | 3 | 6 | 7 | 8 | 4 | 1 | 1 | 1 | 20 | 1 | 2 | 1 | 1 | 1 | 18 | 3 | 15 | 14 | 1 | 3 | 5 | 6 | 1 | NA | 349 | 11 | 5 | 1 | 2 | 1 | 2 | 1 | 13 | 1 | 15 | 87 | 63 | 53 | 1 | 5 | 1 | 1 |
107 | 107 | (>524287) | 3 | 165 | 32586 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 42 | 15 | 4 | 2 | 1 | 9 | 12 | full numerical covering set | 2 | full numerical covering set | 1 | 8 | 2 | 1 | 2 | 2 | 19 | 19 | 4 | full numerical covering set | 21 | full numerical covering set | 3 | 10 | 10 | 1 | 1 | 56 | (>1000000) | 1 | 4458 | full numerical covering set | 11 | full numerical covering set | 5 | NA | 94296 | NA | 2 | 6 | 1 | 1 | NA | full numerical covering set | 1 | full numerical covering set | 137 | NA | 2 | 3 | 1 | 4 | 219967 | 1 | 14 | full numerical covering set | 3 | full numerical covering set | (>1000000) | full numerical covering set | 584 | 5 | 3 | 8 | 1 | 1 | 736 | full numerical covering set | 2 | full numerical covering set | 5 | NA | 6 | 1 | 14 | 2 | 1 | 2963 | 4 | full numerical covering set | 1 | full numerical covering set | 2247 | 2 | 105926 | 3 | 1 | 2 | 1 | 1 | 2 | full numerical covering set | 2 | full numerical covering set | 23 | 24 | 4 | (>524286) | 80 | 22 | 3 | 1 | 2 | full numerical covering set | 3477 | full numerical covering set | 1 | 4 | 8 | 1 | 1 | 2148 | full numerical covering set | 1 | 10 | full numerical covering set | 28 | full numerical covering set | 1 |
108 | 108 | 1 | 5 | 270 | 1 | 1 | 16317 | 1 | 4 | 3 | 3 | 189 | 1 | 16 | 6 | 1 | 293 | 4 | 2 | 1 | 1 | 1 | 1 | 3 | 1 | 3 | 29 | 1 | 2 | 202 | 15 | 3 | 1 | 2 | 1 | 2 | 1 | 24 | 3 | 165 | 2 | 23 | 4 | 91 | 270 | 1 | 1 | 1 | NA | 31 | 4 | 16 | 5 | 24 | 2 | 2 | 5 | 2 | 8 | 1 | 1 | 9 | 2 | 8 | 2 | 4 | 1 | 1 | 51 | 3 | 1 | 1 | 2 | 6 | 1 | 1 | 1 | 1 | 12 | 2 | 1 | 3 | 5 | 2 | 11 | 1 | 4 | 1 | 7 | 1 | 1 | 1 | 2 | 3 | 3 | 7 | 1 | 1 | 2 | 2 | 2 | 1 | 4 | 19 | 2 | 19 | 1 | 5 | (>16777214) | 398 | 12 | 3 | 1 | 2 | 6 | 1 | 3 | 1 | 20 | 1 | 16 | 11 | 1 | 3 | 5 | 4 | 9 | (>100000) | 2 |
109 | 109 | (>524287) | 1 | 6 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 12 | 40 | 16 | 3 | 1 | full numerical covering set | 1 | 3 | full numerical covering set | 2 | 2 | 1 | 1 | 1 | 5 | 4 | 5 | full numerical covering set | 3 | 4 | 8 | 413 | 1 | 1 | 2 | 2 | 1 | 1 | 9 | 1 | 8 | 2 | 1 | full numerical covering set | 25 | 2 | 1 | 5 | 1 | 1 | 84 | 14 | 8 | 1 | 6 | full numerical covering set | 7 | 97 | 1 | 86 | full numerical covering set | 1 | 70 | 1 | 10 | 2 | 23 | 152 | 1 | 2 | 68 | 1 | 2 | full numerical covering set | 1 | NA | 1 | 3 | 1 | 1 | 2 | 10 | 1 | full numerical covering set | 1034 | 28 | 1 | 5 | 1 | 51 | 6 | 8 | 15 | (>524286) | 2 | full numerical covering set | 52 | 1 | 5 | NA | 2 | 3 | 5 | 3 | NA | 2 | NA | 86 | 5 | 1 | 20 | 1 | 1 |
110 | 110 | 2 | 51 | 1 | 10 | 3 | 1 | 2 | 1 | 1 | 2 | 161 | 1 | 124 | 11 | 2 | 2 | 1 | 11 | 66 | 933 | 1 | 42 | 1 | 5 | 58 | 1 | 1 | 12 | 1 | 1 | 2 | 3 | 1 | 356 | 1 | 5 | 2 | full numerical covering set | 2 | 2460 | 9 | 1 | 286 | 3 | 1 | 2 | 1 | 1 | 8 | 1 | 3 | 32 | 5 | 3 | 2 | 23 | 1 | 4 | 1 | 9 | NA | 3 | 118 | NA | 1 | 3 | 4 | 1 | 1 | 22 | NA | 3 | full numerical covering set | 9 | 10 | 118 | 17 | 1 | 2 | 3 | 3 | 180 | 3 | 1 | 4 | 1 | 12 | 2 | 1 | 1 | 12 | 5 | 9 | 158 | 15 | 4 | 20 | 1 | 1 | 6 | 3 | 3 | 10 | NA | 1 | 128 | 15 | 1 | 2 | 1 | 1 | 62 | 7 | 1 | 248 | 3 | 4 | 4 | 151 | 13 | 2 | 1 | 2 | 96 | 1 | 4 | 12 | 1 |
111 | 111 | 16 | 1 | 1 | 1 | 2 | 3 | 1 | 62 | 8 | 1 | 5 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 1 | 1 | 1 | 4 | 150 | 1 | 2 | 4 | 1 | 1 | 1 | 2 | 1 | 1 | 4 | 70 | 3 | 11 | 8 | 46 | 1 | 1 | 1 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 1 | 1 | NA | 2 | 2 | 13 | 3 | 56 | 1 | 11 | 1 | 22 | 2 | 3913 | 1 | 36 | 1 | 3 | 62 | 8 | 37 | 1 | 1 | full numerical covering set | 2 | full numerical covering set | 1 | 6 | 34 | 15 | 139 | 2 | 6 | 1 | 3 | 4 | 1 | 7 | 2 | 22 | 1 | 1 | 1 | 8 | 9 | 1 | 2 | 2 | 1 | 1 | 1 | full numerical covering set | 15 | full numerical covering set | 5 | 10 | 4 | 1 | 1 | 8 | 2 | 1 | 3 | 4 | 1 | 15 | 1 | 30 | 1 | 3 | 4 | 2 | 1 | 1 | 78 | 3222 | 2 | 1 | 1 | full numerical covering set | 4 | full numerical covering set | 18 |
112 | 112 | 1 | 2 | 1 | 1 | 4 | 1 | 3 | 4526 | 1 | 2 | 8 | 10 | 56 | 1 | 14 | 28 | 4 | 1 | 1 | 3 | 7 | 2 | 1 | 1 | 1 | 1 | 4 | 1 | 2 | 1 | 28 | 16 | 1 | 83 | 1 | 1 | 2 | 29 | 2 | 1 | 1 | 115 | 1 | 2 | 8 | 1 | 2 | 4 | 2 | 1 | 459 | 6 | 1 | 47 | 2 | 8 | 32 | 4 | 1 | 6 | 1 | 22 | 1 | 10 | 2 | 1 | 3 | 1 | 2 | 1 | 44 | 3 | 2 | 5 | 2 | 1 | 3 | 1 | 1 | 2 | 49 | 15 | 2 | 2 | 1 | 3 | 2 | 1 | 1 | 707 | 1 | 2300 | 9 | 1 | 1 | 1 | 3 | 1 | 3 | 3 | 93 | 39 | 5 | 6 | 3 | 3 | 10 | 1 | 649 | 3 | 1 | 31 | 1 | 6 | 4 | 329 | 99 | 1 | 2 | 1 | 1 | 2878 | 8 | 41 | 88 | 7 | 3 | 5 |
113 | 113 | 4 | 1 | 4 | 2958 | 1 | 1 | 2 | 47 | 1 | 2 | 1 | 4 | 1336 | 1 | 2 | 40 | (>8000) | 47 | 50 | full numerical covering set | 1 | 28 | 263 | 1 | 28 | 1 | 1 | 18 | 17 | 1 | full numerical covering set | 1 | 6 | 14 | 17 | 35 | full numerical covering set | 71 | NA | 4 | 1 | 213 | 114 | 1 | 1 | 2732 | full numerical covering set | 2 | 2 | 1 | 5 | 6 | 7 | 3 | 2 | 1 | 1 | 2 | 1 | 1 | 44 | 89 | 7 | 10 | 1 | 1 | 2 | 375 | 1 | 8 | 3 | 5 | 2 | 1 | 3 | 64 | full numerical covering set | 2 | NA | 1 | 4 | 616 | 3 | 3 | 2 | 1 | 1 | 8 | 23 | 1 | 364 | 5 | 3 | full numerical covering set | 493 | 8 | 2 | 3 | 1 | 12 | 5 | 1 | 4 | 3 | 3 | 988 | 1 | 40 | 14 | 21 | 4 | 4 | 3 | 3 | 120 | 1 | 5 | 2 | NA | 3 | 472 | 5 | 2 | 2 | 1 | 32 | full numerical covering set | NA |
114 | 114 | 32 | 1 | 12 | 1 | 1 | 2 | 3 | 2 | 5 | 3 | 10 | 15 | 1 | 1 | 3 | 4 | 2 | 1 | 3 | 1 | 2 | 11 | 3 | full numerical covering set | 1 | 6 | 1 | 2 | 1 | 175 | 6 | 2 | 25 | 1 | 4 | 6 | 1 | 3 | 1 | 1 | 4 | 1 | 1 | 7 | 3 | 218 | 406 | 5 | 27 | 1 | 2 | 3 | 1 | 7 | 1 | 2 | 3 | 36 | 1055 | 1 | NA | 1 | 13 | 1 | 1 | 2 | 1 | 1 | 1 | 662 | 2 | 1 | 78 | 3 | 10 | 2 | 1 | 1 | 1 | 2 | 10 | 1 | 1 | 85 | 2 | 2 | 6 | 21 | 7 | 19 | full numerical covering set | 11 | 10 | 9 | 1 | 10 | 1 | 1 | 1 | 2 | NA | 5 | 1 | 29 | 1 | 2 | 2 | 2 | 7 | 1 | 710 | 1 | 3 | 31 | 3 | 4 | 1 | 7 | 1 | 1 | 6 | 2 | 3 | 13 | 1 | 2 | 1 | 1 |
115 | 115 | 4 | 4 | 1 | 1 | 44 | 1 | 3 | 1 | 2 | 1 | 1 | 1 | 10 | 2 | 1 | 9 | (>8000) | 1 | 1 | 7 | 2 | 1 | 51 | 3 | 2 | 1 | 1 | 1 | 10 | 47376 | 1 | 2 | 2 | 1 | 5 | 2 | 12 | 94 | 1 | 38 | 2 | 1 | 1 | 4 | 4 | 79 | (>8000) | 1 | 14 | 798 | 5 | 1 | 38 | 1 | 1 | 1 | full numerical covering set | 2 | full numerical covering set | 13 | 2 | 1 | 1 | 2 | 4 | 1 | 1 | NA | 20 | 4 | 1 | 66 | 330 | 1 | 1 | 1 | 1110 | 1 | 3 | 1 | 268 | 1 | 7 | 1 | 4 | 3 | 1 | 4 | 2 | 5 | 1 | 1 | 2 | 1 | NA | 2 | 2 | 268 | 1 | 2 | NA | 1 | 1 | 44 | 2 | 5 | 47 | 1 | 2 | 1 | 11 | 12 | 2 | 2 | 3 | 1 | 2094 | 7 | 1 | 17 | 2 | 6 | 417 | 2 | 2 | 2 | 247 | 3 |
116 | 116 | 2 | 1 | 1 | 6 | 3 | 2 | 4 | 1 | 8 | 4 | 1 | 47 | 2 | full numerical covering set | 1 | 2 | 1 | 1 | 2 | 5 | 1 | 10 | 3 | 1 | full numerical covering set | NA | 2 | 2 | 1 | 2 | NA | 3 | 17 | 10 | 3 | 1 | 2 | 1 | 3 | 2666 | 115 | 48 | 2 | 1 | 1 | 14 | 5 | 1 | 6 | 1 | 13 | 4 | full numerical covering set | 6 | NA | 13 | 5 | 88 | 3 | 1 | 6 | 1 | 1 | full numerical covering set | 1 | 4 | 14 | 2585 | 1 | 18 | 1 | 1 | 6 | 67 | 2 | 4 | 1 | 1 | 4 | 1 | 1 | 6 | 1 | 1 | 6 | 3 | 1 | 2 | 17 | 551 | 2 | full numerical covering set | 1 | 2530 | 1427 | 5 | 2 | 1 | 1 | 4 | 1 | 1 | full numerical covering set | 143 | 128 | 86 | 1 | 9 | 58 | 5 | 2 | 2 | 1 | 2 | 16 | 1 | 44 | 2 | 5 | 1 | 2 | 1 | 2 | 1208 | 421 | 2 | 12 | 89 |
117 | 117 | 1 | 286 | 2 | 101 | 1 | 3 | 11 | 1 | 26 | 1 | 1164 | 6 | 1 | 9 | 1 | 1 | 3 | 2 | 18 | 1 | 1 | 2 | 1 | 3 | 3 | 15 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 11 | 6 | 5 | 2 | 1 | 57 | 3 | 1 | 2 | 6 | 2 | 1 | 5 | 227 | 4 | 2 | 1 | 76 | 2 | 2 | 7 | 1 | 1 | 6 | 460033 | (>8000) | 38 | 29 | 11 | 17 | 1 | 1 | 1 | 182 | 4 | 3 | 1 | 5 | 12 | 1 | 3 | 1428 | 1 | 311 | 1 | 1 | 3 | 264 | 11 | 14 | 1 | 1 | 1 | 3 | 2 | 6 | 1 | 8 | 2 | 1 | 11 | 5 | 4 | 4 | 1 | 2 | 1 | 3 | 12 | 5 | 9 | 1 | 11 | 2 | 1 | 71 | 9 | 3 | 4 | 4 | 1 | 36 | 3 | (>524286) | 1 | full numerical covering set | 6 | 1 | 2 | 4 | 22 | 10 | 88 | NA | 2 |
118 | 118 | 4 | 1 | 46 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 3 | 22 | 1 | 1 | 80 | 1 | 1 | 7 | 2 | 2 | 1 | 1 | 5 | 1 | 3 | 10 | 1 | 1 | 1 | 67 | 1 | 6 | 96 | 4 | 2 | 1 | 1 | 1 | 1 | 106 | 1 | 2 | 5 | 2 | (>740000) | 1 | full numerical covering set | 1 | 48 | 4 | 1 | 1 | 1 | 2 | 11 | 15 | 2 | 5 | NA | 2 | 26 | 1 | 1 | 1 | 6 | full numerical covering set | 10 | 4 | 65 | 2 | 7 | 7 | 1 | 1 | 2 | 1 | 1 | 8 | 1 | 3 | 31 | 2 | 20 | 1 | 44 | 6 | 3 | 1 | 28 | 4 | 1 | 25 | 1 | 1 | 364 | 3630 | 1 | 19 | 1 | 2 | 1 | 1 | 12 | 2 | 34 | 7 | 1 | 1 | 1 | 6 | 3 | 2 | 3 | 1 | 3 | 1377 | 4 | 51 | 1 | 4 | 1 | 2647 | 1 | 738 | 2 |
119 | 119 | 4 | 1 | 1 | full numerical covering set | full numerical covering set | 2 | full numerical covering set | 1 | full numerical covering set | 6 | full numerical covering set | 1 | 18 | 1 | 381 | 4 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | 12 | 5 | 1 | 2 | full numerical covering set | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 739 | 6 | full numerical covering set | 1 | 2 | 12 | 1 | 3 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 8 | 10 | 1 | 15 | full numerical covering set | 7 | full numerical covering set | 6 | full numerical covering set | 1 | full numerical covering set | full numerical covering set | 12 | 2 | 1 | 4 | 2 | 5 | 409 | full numerical covering set | full numerical covering set | 4 | full numerical covering set | 1 | full numerical covering set | 10 | full numerical covering set | 113 | 2 | 1 | 1 | 2 | full numerical covering set | 1 | full numerical covering set | 1 | 12 | 2 | 5 | 5 | 4 | full numerical covering set | 3 | 196 | full numerical covering set | 1 | full numerical covering set | 1 | 2 | full numerical covering set | 1 | 6 | 12 | 99 | 17 | 8 | full numerical covering set | 8 | full numerical covering set | 1 | 118 | 4 | 1 | 1 | full numerical covering set | 3 | full numerical covering set | 228 | full numerical covering set | 1 | full numerical covering set | full numerical covering set | 4 | 46 | 3 | 1 | 12 | 1 | 3 | full numerical covering set | full numerical covering set | 2 | full numerical covering set | 1 |
120 | 120 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 3 | 1 | 1 | 2 | 1 | 29 | 1 | 1 | 21 | 1 | 1 | 2 | 1 | 2 | 4 | 2 | 1 | 1 | 1 | 1 | 4 | 2 | 2 | 159 | 1 | 26 | 1 | 31 | 1 | 1 | 4 | 1 | 3 | 2 | 3 | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | NA | 1 | 1 | 2 | 6 | 1 | 1 | 1 | 1 | 427 | 2 | 6 | 1 | 182 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 98 | 12 | 1 | 1 | 111 | 1 | 1 | 11 | 1 | 3 | 3 | 3646 | 1 | 3 | 5 | 1 | 3 | 6 | 10 | 1 | 3 | 2 | 16 | 6 | 1 | 4 | 1 | 1 | 1 | 1 | 11 | 15 | 2 | 4 | 1 | 2 | 1 | 4 | 1 | 2 | 5 | 1 | 1 | 2 | 20 | 2 | 3 | 1 | 1 | 1 | 1 |
121 | 121 | 1 | 5 | 3 | 1 | 1 | 1 | 6 | 2 | 1 | 5 | 2 | 1 | 1 | 1 | 1 | 4 | 5 | 1 | 4 | 2 | 4 | 1 | 102 | 72 | 4 | 1 | full numerical covering set | 1 | 2 | 1 | 69 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 280 | 4 | 1 | 60 | 1 | 25 | 20 | 2 | NA | 14 | 1 | 1 | 1 | 6 | 1 | 1 | 44 | 29 | 1 | 1 | 6 | 31 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 10 | 10 | 2 | 2 | 1 | 5 | 2 | 1 | 44 | 1 | 1 | 1 | 53 | 4 | 1 | 2 | 5 | 2 | 1 | 6 | 27 | 1 | 1 | 1 | 18 | 5 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 3 | 1 | full numerical covering set | 1 | 1 | 3 | 4 | 3 | 1 | full numerical covering set | 17 | 1 | 10 | 5 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 12 | 6 | 1 | 1 | 7 | 61 | 2 |
122 | 122 | (>16777215) | 755 | 1 | 358 | 135 | 1 | 6 | 1 | 3 | 6 | 13 | 2 | 2 | 1 | 1 | 764 | 371 | 2 | 2 | 1 | 1 | 6 | 389 | 3 | 674 | 99 | 95 | 108 | 1 | 6 | 1236 | 19 | 1 | (>1000000) | 1 | 35 | 1622 | 1 | 1 | full numerical covering set | 1 | 2 | 4 | 263 | 3 | 4 | full numerical covering set | 1 | 1102 | 1 | 189 | 54 | 25 | 1 | 2 | 1 | 7 | 10 | 131 | 1 | 44 | 535 | 1 | NA | 9 | 1 | 6 | 1 | 1 | 12 | 1 | 916 | NA | 1 | 1 | 4 | NA | 2 | full numerical covering set | 9 | 1 | 2 | full numerical covering set | 75 | 10 | 105 | 6 | 2 | 1 | 23 | 28 | 1387 | 12 | NA | 3 | 7 | 10 | 1 | 6 | 44 | 1 | 4 | 1314 | 1 | 3 | 168 | full numerical covering set | 1 | 2 | 1 | 5 | 4 | NA | 3 | 64 | 1 | 3 | 4 | 1 | 5 | 6216 | (>16777214) | 2 | 6 | NA | 1 | 2 | NA |
123 | 123 | (>524287) | 2 | (>8000) | 6 | 8 | 1 | 1 | 16 | 6 | 1 | 1 | 2 | 28 | 1 | 15 | 3 | 4 | 3 | 59 | 2 | 4 | 1 | 11 | 1 | 4 | 8 | 5 | 19 | 2 | 1 | 1 | 2 | 14 | 19 | 1 | 11 | 4 | 42 | 1 | 5 | (>8000) | 1 | 7 | 1 | 6 | 1 | 29 | 10 | 2 | 1 | 1 | 1 | 14 | 15 | full numerical covering set | 3 | 6 | 10 | 7 | 5 | full numerical covering set | 5 | full numerical covering set | 1 | 16 | 3 | NA | 2 | full numerical covering set | 4 | 67 | 24 | 6 | 1 | 11 | 1 | 16 | 26 | 9 | 3 | 8 | 17 | 59 | 1 | 20 | 4 | 1 | 19 | 2 | 1 | 3 | 1 | 2 | 16302 | 1 | 11 | 2 | 12 | 1 | 1 | full numerical covering set | 1 | 11 | 503 | 4 | 36 | 1 | 10 | 2 | 48 | 1 | 2 | 34 | 25 | 73 | 7 | 822 | 266 | 11 | 12 | 36 | (>250000) | (>524286) | 2 | 370 | 3 | 29 | 3 |
124 | 124 | 2 | 1 | 1 | 471 | 6 | 10 | 3 | 1 | 1 | 18 | 30 | 1 | 1 | 5 | 1 | 2 | 11 | 4 | 1 | 1 | 4 | 1 | 2 | 5 | 58 | 4 | 2 | 6 | 85 | 16 | 12 | 2 | 1 | 1 | 1 | 12 | 2 | 1 | 113 | 4 | 2 | 1 | 1 | 109 | 1 | 4 | 13 | 1 | 9 | 20 | 4 | 1 | 4 | NA | 5 | 4 | 1 | 1 | 3 | 2 | 2460 | 2 | 2 | 1 | 1 | 2 | 6 | 569 | 3 | 1 | 20 | 1 | 2 | 15 | 11 | 1508 | 15 | 2 | 7 | 1 | 494 | 1 | 2515 | 63 | 2 | 20 | 1 | 2 | NA | 1 | 10 | 1 | 2 | 1 | 2 | 1038 | 3 | 1 | 1 | 1 | 426 | 2 | 4 | 165 | 3 | 4 | 1 | 2 | 317 | 1 | 16 | 2 | 5 | NA | 2 | 4 | 3 | 1 | 1 | 6 | 1104 | 44 | 2 | 1 | 1 | 4 | 1 | 3 |
125 | 125 | full algebraic covering set | 1 | 2 | 2 | 1 | 1 | full numerical covering set | full numerical covering set | 1 | 4 | full numerical covering set | 6 | full numerical covering set | 11 | full numerical covering set | 14 | 1 | 1 | 2 | 12707 | 6 | 90 | 1 | 1 | (>1789569) | 1 | full numerical covering set | 2 | full numerical covering set | 2 | full numerical covering set | 1 | 1 | full numerical covering set | full numerical covering set | 2 | 2 | 1 | 7 | NA | 2793 | 4 | 52 | 1 | 2 | 148 | 3 | 7 | 2 | full numerical covering set | 6 | 2 | 1 | 3 | full numerical covering set | 1 | 18 | 4 | full numerical covering set | 2 | 2 | 103 | 9 | full algebraic covering set | 933 | 4 | 8 | 1 | 1035 | 2 | full numerical covering set | 1 | 8 | 1753 | 2 | full numerical covering set | 1 | 14 | full numerical covering set | 7 | 2 | 640 | full numerical covering set | 1 | 30 | 3 | 1 | 48 | 1 | 1 | 8 | full numerical covering set | 1 | 200 | 1 | 4 | full numerical covering set | 1 | 2 | 16 | 31 | 4 | full numerical covering set | 1 | 1 | 2 | full numerical covering set | 8 | 4 | 1 | 1 | 8 | full numerical covering set | 1 | 6 | 5 | 8 | full numerical covering set | 1 | 6 | 12 | 45 | 8 | 16 | full algebraic covering set | 2 | full numerical covering set | 1 |
126 | 126 | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 5 | 15 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 5 | 2 | 4 | 7 | 56 | 1 | 25 | 717 | 1 | 2 | 1 | 1 | 2 | 5 | 1 | 1 | 1 | 3 | 1 | 18 | 1 | 1 | 7 | 2 | 1 | 2 | 3 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 2 | 1 | 1 | 1 | 1 | 41 | 12 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 4 | 1 | 2 | 3 | 5 | 1 | 1 | 3 | 1 | 1 | 2 | 3 | 1 | 8 | 1 | 1 | 1 | 8 | 1 | 1 | 2 | 3 | 1 | 1 | 3 | 1 | 1 | 1 | 8 | 3 | 6 | 3 | 2 | 4 | 4 | 3 | 2 | 2 | 8 | 53 | 3 | 1 | 1 | 1 | 7 | 1 | 72 | 2 | 4 | 1 | 5 | 4 |
127 | 127 | (>524287) | 2 | 1 | 1 | 2 | 1 | 11 | 1 | 186 | 4 | 1 | 2 | 22 | 1 | 1 | 4 | 2 | 1 | 117 | 2 | 4 | 2 | 1 | 1 | 4 | 1 | 7 | 1 | 14 | 6 | 3 | 3 | 2 | 1 | 3 | 5 | 1668 | 1 | 1 | 1 | 500 | 4 | 1 | 2 | 2 | 1 | 15 | 4 | 18 | 2 | 3 | 3 | 2 | 2 | 1 | 1 | 2 | 5 | 1 | 1 | 88 | 3 | 1 | 137 | 6 | 32 | NA | 1 | 2 | 13 | 71 | 2 | 168 | 2 | 3 | 5 | 158 | 1 | 5 | 1 | 12 | 2 | 1 | 7 | 12 | 3 | 15 | 1 | 226 | 3 | 1 | 4 | 6 | 1 | 1 | 3 | 2 | 14 | 1 | 6 | 4 | 4 | NA | 6 | 18 | 1 | 7 | 5 | 2 | 1 | 3 | 263 | 30 | 1 | 5 | 1 | 34 | 1 | 5 | 1 | 1332 | 2 | 9 | 1 | 2 | 165 | (>524286) | 1 |
128 | 128 | full algebraic covering set | 1 | 27 | 2 | 1 | 1 | 2 | full algebraic covering set | 1 | 2 | 1 | 4 | 4 | 7 | 16 | (>4908534051) | 21 | 6 | 178 | 473 | 1 | 6 | 7 | 9 | 64 | 1 | 1 | 322 | 11 | 11 | 20 | full algebraic covering set | 3 | 2 | 1 | 9 | 12 | 291 | 1 | (>1285714) | 39271 | 13001 | 14 | full numerical covering set | 2 | 4 | (>1028571) | 2 | 6 | 3 | 1 | 15608 | 3 | 3 | 56 | 7 | 1 | 6 | 5 | 1 | 24 | 1 | 2 | full algebraic covering set | 3 | 3 | 2 | 7 | 2 | 2 | 17 | 2 | 2 | 1 | 1 | 52 | 1 | 3 | 190 | 3 | 1 | 54 | (>400000) | 1 | full numerical covering set | 111 | 8 | (>1028571) | 1 | 4 | 24 | 1 | 6 | (>1028571) | 1 | 1 | 2 | full numerical covering set | 6 | 26 | 3 | 6 | 88 | 1 | 1 | 12 | 1 | 2 | 2 | 1 | 4 | 118 | 79 | 1 | 6 | 13 | 13 | 44110 | 1 | 1 | 12 | (>400000) | 3 | 258 | 1 | 1 | 72 | full algebraic covering set |