1 | The tabs provide lists of select 19F NMR data for organic, organometallic, and inorganic compounds - sorted by chemical shift. |
---|---|
2 | |
3 | |
4 | |
5 | |
6 | |
7 | This data is meant to serve only as a guide to identifying and interpreting signals. |
8 | |
9 | |
10 | |
11 | |
12 | |
13 | If you would like to contribute data, please send an excel file that is similarly formated to: lly221@lehigh.edu |
14 | It may take a few days for your data to be added. |
1 | Compound | Formula | Solvent | Chemical Shift | Splitting Pattern | Coupling Constant in Hz (0 if not observed or m) | Literature Reference or Group data | Notes | |
---|---|---|---|---|---|---|---|---|---|
2 | SF4 | F4 S | not reported | 97 | t | 76 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | axial F; gas phase at -30°C (appears as two broad singlets at RT, as one broad singlet at 85 ∘C) | |
3 | PhSF5 | C6 H5 F5 S | CDCl3 | 84 | m | J. Fluorine Chem. 2004, 125, 549-552 | axial F; splitting shows a nine-line pattern | ||
4 | S=SF2 | F2 S2 | not reported | 77.8 | s | Inorg. Chem. 1990, 29, 2698-2701 | gas state | ||
5 | PhSF5 | C6 H5 F5 S | CDCl3 | 61.9 | dm | 149.3 | J. Fluorine Chem. 2004, 125, 549-552 | equatorial F's | |
6 | SF6 | F6 S | not reported | 54.9 | s | Inorg. Chem. 1990, 29, 2698-2701 | gas state | ||
7 | CH3COF | C2 H3 F O | CH3CN | 50 | q | 7 | J. Fluorine Chem. 2000, 106, 217-221 | ||
8 | C7 H14 Cl F12 N2 P2 | CDCl3 | 47.61 | s | 0 | J. Am. Chem. Soc. 2009, 131, 1662-1663 | N-F resonance | ||
9 | CH3(CH2)14COF | C16 H31 F O | CDCl3 | 45.3 | s | 0 | Chem. Eur. J. 2020, 26, 16261-16265 | ||
10 | PhSC(O)F | C7 H5 F O S | not reported | 43.6 | s | 0 | https://pubs.acs.org/doi/abs/10.1021/jo01020a073 | ||
11 | SF4 | F4 S | not reported | 37 | t | 76 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | equatorial F; gas phase at -30°C (appears as two broad singlets at RT, as one broad singlet at 85 ∘C) | |
12 | 4-NO2-PhCOF | C7 H4 F N O3 | CDCl3 | 21.3 | s | 0 | Chem. Eur. J. 2020, 26, 16261-16265 | ||
13 | PhCOF | C7 H5 F O | CDCl3 | 17.54 | s | 0 | Org. Lett. 2009, 11, 5050-5053. | ||
14 | 4-MeO-PhCOF | C8 H7 F O2 | CDCl3 | 15.9 | s | 0 | Chem. Eur. J. 2020, 26, 16261-16265 | ||
15 | CF3COF | C2 F4 O | not reported | 14.9 | q | 7 | Journal of Fluorine Chemistry 1990, 49 (1), 43–66 | ||
16 | PhSOF | C6 H5 F O S | CD3CN | 6.5 | s | 0 | Chem. Ber. 1980, 113, 1047-1052 | ||
17 | CF2Br2 | C Br2 F2 | 6.28 | s | 0 | Magn. Reson. Chem. 2004; 42: 534–555 | 6.77 ppm from Ref. 50 | ||
18 | CF2BrCl | C Br Cl F2 | 0.01 | s | 0 | Magn. Reson. Chem. 2004; 42: 534–555 | Chlorine isotope effect indicates one Cl. | ||
19 | CF2Cl2 | C Cl2 F2 | -6.77 | s | 0 | https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.1368 | |||
20 | (Cy)2NCOF | C13 H22 F N O | CDCl3 | -13.1 | s | 0 | Chem. Eur. J. 2019, 25, 10907-10912 | ||
21 | CF3COF | C2 F4 O | -13.5 | https://doi.org/10.1016/S0022-1139(00)82942-5 | |||||
22 | CF3I | C I F3 | CDCl3 | -15.5 | s | 0 | J. Fluorine Chem. 2008, 129, 131-136 | ||
23 | (CH3)2NSF3 | C2 H6 F3 N S | not reported | -20.2 | tsept | J(F(eq), F(ax)) = 58; J(F(eq,CH3) = 8.2 | Can. J. Chem. ,1972, 50 (15), 2428-2431 | signal for equatorial F | |
24 | CF3Br | C Br F3 | not reported | -21 | s | 0 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | -17.99; or -18.6 ppm in acetone-d6 at 30 °C, 94.1 MHz, int. CCl3F; or b 21 ppm from Ref. 49, neat, external CCl3F reference. | |
25 | (PhCH2)2NCOF | C15 H14 F N O | CDCl3 | -22.6 | s | 0 | Chem. Eur. J. 2019, 25, 10907-10912 | ||
26 | COF2 (carbonyl fluoride) | C F2 O | ether | -22.8 | s | 0 | J. Fluorine. Chem. 1989, 43, 235-241 | ||
27 | CF3Cl | C Cl F3 | not reported | -33 | s | 0 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | ||
28 | PF3 | F3 P | CDCl3 | -33 | d | 1402.7 | Inorg. Chem. 2008, 147, 9279-9292 | In gas state, -33ppm | |
29 | PhCHCHCH2SeCF3 | C10 H9 F3 Se | CDCl3 | -33.8 | s | 0 | ACS Sustainable Chem. Eng. 2018, 6, 1327-1335 | ||
30 | (C2H5)2NSF3 | C4 H10 F3 N S | not reported | -34.4 | tquintet | J(Feq,Fax) = 62Hz; J(Feq,NCH) = 6.1 Hz | Can. J. Chem. ,1972, 50 (15), 2428-2431 | signal for equatorial F | |
31 | PhCH2SeCF3 | C8 H7 F3 Se | CDCl3 | -34.5 | s | 0 | ACS Sustainable Chem. Eng. 2018, 6, 1327-1335 | ||
32 | C9 H6 F3 N Se | CDCl3 | -35.9 | s | 0 | Org. Chem. Front., 2019, 6, 2732-2737 | |||
33 | PhSeCF3 | C7 H5 F3 Se | CDCl3 | -36.1 | s | 0 | Eur. J. Org. Chem.2017, 530-533 | ||
34 | CF3S(SO2)CF3 | C2 F6 O2 S2 | CDCl3 | -36.13 | q | 4.9 | Angew.Chem. Int.Ed. 2023, 62,e202306095 | ||
35 | PhCCSeCF3 | C9 H5 F3 Se | CDCl3 | -36.2 | s | 0 | Org. Biomol. Chem., 2016, 14, 11502-11509 | ||
36 | 4-MeO-PhSeCF3 | C8 H7 F3 O Se | CDCl3 | -37.2 | s | 0 | Org. Lett. 2017, 19, 3919-3922 | ||
37 | C5 H3 F3 S Se | CDCl3 | -38.3 | s | 0 | Chem. Eur. J. 2014, 20, 657-661 | |||
38 | S=CF2 | C F2 S | not reported | -40.74 | s | 0 | |||
39 | CF3SeCl | C Cl F3 Se | THF | -41 | s | 0 | J. Org. Chem. 2016, 81, 8268-8275 | ||
40 | F2PPh3 | C18 H15 F2 P | CDCl3 | -42.9 | d | 659 | J. Am. Chem. Soc. 2008, 130, 12214-12215 | ||
41 | PhCCSCF3 | C9 H5 F3 S | CDCl3 | -43.6 | s | 0 | Org. Biomol. Chem., 2016, 14, 11502-11509 | ||
42 | CH3(CH2)5CCSCF3 | C9 H13 F3 S | CDCl3 | -44.4 | s | 0 | Org. Biomol. Chem., 2016, 14, 11502-11509 | ||
43 | C6 H11 F3 N2 S | CDCl3 | -46.92 | s | 0 | Org. Lett. 2024, 26,6459−6464 | |||
44 | CF3CO2SCF3 | C3 F6 O2 S | not reported | -47.3 | s | 0, 0 | Chem. Ber. 1969, 102, 77-82 | SCF3 resonance | |
45 | C8 H4 F3 N O3 S2 | CDCl3 | -47.3 | s | 0 | Angew. Chem. Int. Ed. 2014, 53, 9316-9320 | |||
46 | C5 H4 F3 N O2 S | CDCl3 | -48.2 | s | 0 | Org. Lett. 2014, 16, 2046-2049 | |||
47 | [pyridine-F][BF4] | C5 H5 B F5 N | CDCl3 | -49 | br s | 0 | J Fluorine Chem. 1991, 53, 369-377 | N-F resonance | |
48 | [Ph2SCF3][OTf] | C14 H10 F6 O3 S2 | CDCl3 | -50.1 | s | 0 | Chem. Eur. J. 2016, 22, 6542-6546 | SCF3 resonance | |
49 | PhN(CH3)SCF3 | C8 H8 F3 N S | CDCl3 | -50.4 | s | 0 | Org. Process. Res. Dev. 2016, 20, 960–964 | ||
50 | CF3CBr2CF2Cl | C3 Br2 Cl F5 | -50.82 | q | 4J = 11.9 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
51 | CH3CO2SCF3 | C3 H3 F3 O2 S | not reported | -51.9 | s | 0 | J. Fluorine Chem. 1985, 29, 297-310 | ||
52 | CF3SO2OCF3 | C2 F6 O3 S | CDCl3 | -53 | s | 0 | Chem. Commun. 2016, 52, 7458-7461 | CF3O resonance | |
53 | PhNHSCF3 | C7 H6 F3 N S | CDCl3 | -53.3 | s | 0 | J. Org. Chem. 2008, 73, 9362-9365 | ||
54 | (C2H5)2NSF3 | C4 H10 F3 N S | not reported | -54 | d | 62 | Can. J. Chem. ,1972, 50 (15), 2428-2431 | signal for axial F; couples with equatorial F; dditional fine structure is apparent and an approximate value for the coupling constant of axial F with NCH is 3Hz | |
55 | CH3CH2CH(OCF3)CHCHCO2Et | C9 H13 F3 O3 | CDCl3 | -58.4 | s | 0 | Chem. Commun. 2016, 52, 7458-7461 | ||
56 | [Na][BrCF2CO2] | C2 Br F2 Na O2 | CDCl3 | -58.7 | s | 0 | Vicic Group Data | ||
57 | PhCH(OCF3)CO2Et | C11 H11 F3 O3 | CDCl3 | -59.3 | s | 0 | Chem. Commun. 2016, 52, 7458-7461 | ||
58 | (CH3)2NSF3 | C2 H6 F3 N S | not reported | -59.4 | dseptet | J(F(ax), F(eq)) = 58; J(F(ax),CH3) = 5 | Can. J. Chem. ,1972, 50 (15), 2428-2431 | signal for axial F | |
59 | [Ph2SCH2CF3][OTf] | C15 H12 F6 O3 S2 | acetone-d6 | -61.3 | t | 8.8 | J. Org. Chem. 2017, 82, 8220-8227 | CH2CF3 resonance | |
60 | CF3SO2OCF3 | C2 F6 O3 S | CDCl3 | -73.6 | s | 0 | Chem. Commun. 2016, 52, 7458-7461 | CF3S resonance | |
61 | CF3CO2SCF3 | C3 F6 O2 S | not reported | -76.5 | s | 0, 0 | Chem. Ber. 1969, 102, 77-82 | CF3-C resonance | |
62 | [PH3PCF2Br]+[Br-] | C19 H15 Br2 F2 P | CDCl3 | -52.0 | d | 83.4 | Journal of Fluorine Chemistry 220 (2019) 78–82 | ||
63 | [PH3PCF2Cl]+[I-] | C19 H15 Cl F2 I P | CDCl3 | -52.5 | d | 87.2 | Journal of Fluorine Chemistry 220 (2019) 78–82 | ||
64 | CF3-CC-CF3 | C4 F6 | not reported | -53 | s | 0 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | ||
65 | CF3CF2CBr2CF2BrCF2 | C5 Br3 F9 | -55.81 | tt | 5J(CF2Br-CF2) = 12.5; 6J(CF2Br-CF3) = 2.6 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | Ref. 51 gives -70.36, -104.36, -120.74, and -81.28 ppm, 4Js = 10 and 12 Hz. | ||
66 | PhCO2CF3 | C8 H5 F3 O2 | CDCl3 | -57.7 | s | 0 | J. Am. Chem. Soc. 2018, 140, 6801-6805 | ||
67 | CF3CBrClCClF2 | C3 Br Cl2 F5 | -58.02 | dq | 2J(Fa-Fb) = 165.7 Hz; 4J(Fa-CF3) = 11.6 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
68 | CBrF2CClFCF2Cl | C3 Br Cl2 F5 | -58.04 | ddd | 2J(Fa-Fb) = 173 Hz; 4J(Fa-Fd) = 15.2 Hz; 4J(Fa-Fc) = 13.0 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
69 | CBrF2CClFCF2Cl | C3 Br Cl2 F5 | -58.08 | ddd | 2J(Fb-Fa) = 173 Hz; 4J(Fb-Fc) = 18.3 Hz; 4J(Fb-Fd) = 12.4 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | Overlapping multiplets | ||
70 | p-ClC6H4OCF3 | C6 H4 Cl F3 O | CDCl3 | -58.5 | s | 0 | Angew. Chem. Int. Ed. 2018, 57, 13795-13799 | ||
71 | CF3CBrClCClF2 | C3 Br Cl2 F5 | -59.2 | dq | 2J(Fb-Fa) = 165.7 Hz; 4J(Fb-CF3) = 12.2 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
72 | [(Me2-N)3C]+[Me3SiF2]- | C10 H27 F2 N Si | MeCN | -59.3 | s | 0 | Inorganic Chemistry. 2002, 41 (23), 6118-6124 | ||
73 | CBrF2CF2CFCl2 | C3 Br Cl2 F5 | -59.82 | dt | 4J(CBrF2-CCl2F) = 14.5 Hz; 3J(CBrF2-CF2) = 1.7 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
74 | [(o-MeO-C6H4)3PCFBr2]+ [Br]- | C22 H21 Br3 F O3 P | not reported | -60.2 | d | 99 | J. Org. Chem. 1988, 53, 2, 366–374 | uncertain; or may also be -63.8,d (J=95) | |
75 | ICF2CO2H | C2 H F2 I O2 | CD3CN | -61.1 | s | 0 | Vicic Group Data | ||
76 | BrCF2CO2Et | C4 H5 Br F2 O2 | CDCl3 | -61.7 | s | 0 | Vicic Group Data | ||
77 | [Ph3PCFCl2]+[X]- | C19 H16 Cl2 F P X | not reported | -61.8 | d | 83 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
78 | CF4 | C F4 | not reported | -62 | s | 0 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | ||
79 | CBrF2CClFCF2Cl | C3 Br Cl2 F5 | -62.04 | dddd | 2J(Fd-Fc) = 170.4 Hz; 4J(Fd-Fa) = 15.2 Hz; 4J(Fd-Fb) = 12.4 Hz; 3J(Fd-Fe) = 7 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | Chlorine isotope effect indicates one Cl | ||
80 | [PH3PCF2I]+[I-] | C19 H15 F2 I2 P | CDCl3 | -62.3 | d | 82.8 | Journal of Fluorine Chemistry 220 (2019) 78–82 | ||
81 | PhCF3 | C7H5F3 | CD3CN | -62.5 | d | s | New J. Chem., 2017,41, 1417-1420 | ||
82 | CBrF2CClFCF2Cl | C3 Br Cl2 F5 | -62.78 | dddd | 2J(Fc-Fd) = 170.4 Hz; 4J(Fc-Fb) = 18.3 Hz; 3J(Fc-Fe) = 13.3 Hz; 3J(Fc-Fa) = 13 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | Overlapping multiplets | ||
83 | [Bu3PCFCl2]+[Cl]- | C13 H27 Cl3 F P | not reported | -62.8 | d | 68 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
84 | CBrF2CF2CF2Br | C3 Br2 F6 | -62.94 | t | 2.6 | Magn. Reson. Chem. 2004; 42: 534–555 | |||
85 | BrCF2CO2H | C2 H Br F2 O2 | CD3CN | -63.2 | s | 0 | Vicic Group Data | -64.5ppm, s, in CDCl3 solvent | Ref: SciFinder; Fluorine-19 NMR Spectrum for 354-08-5; spectrum ID CC-01-F_NMR-17989; (accessed November 4, 2024) |
86 | CBrF2CF2CF2Cl | C3 Br Cl F6 | -63.2 | tt | 4J(CF2Br-CF2Cl) = 12.8; 3J(CF2Br-CF2) = 2.4 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
87 | CF3CH2CN | C3 H2 F3 N | CH3CN | -64.3 | t | 9 | J. Fluorine Chem. 2000, 106, 217-221 | ||
88 | C9 H4 F9 N3 O5 S2 | acetone-d6 | -64.3, -80.0 | s, s | 0, 0 | Angew. Chem. Int. Ed. 2018, 57, 13784-13789 | |||
89 | [Ph3PCFClBr]+[X]- | C19 H16 Br Cl F P X | not reported | -65.1 | d | 80 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
90 | ICF2H | C H F2 I | CDCl3 | -66.5 | d | 56.3 | Org. Process Res. Dev. 2020, 24, 1077−1083 | -67.9 ppm, d, J = 55 Hz | Ref: (Journal of Fluorine Chemistry 1981, 18 (4), 525–531. https://doi.org/10.1016/S0022-1139(00)82669-X) |
91 | CBrF2CF2CF2Cl | C3 Br Cl F6 | -67.24 | tt | 4J(CF2Cl-CF2Br) = 12.8; 3J(CF2Cl-CF2) = 1.7 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | Decoupling the 116 ppm CF2 collapsed the 67.24 ppm tt to a t with J D 12.8 Hz plus Cl isotope effect suggesting one Cl (from peak heights: 74.6 and 25.4% vs 75.53 and 25.47% natural abundance of Cl isotopes). | ||
92 | BrCF2H | C H Br F2 | CDCl3 | -68.3 | d | 60 | Journal of Fluorine Chemistry 1981, 18 (4), 525–531. | ||
93 | CF3CBr2CF2Cl | C3 Br2 Cl F5 | -68.65 | t | 4J = 11.9 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
94 | Me3Si-CF3 | C4 H9 F3 Si | MeCN | -68.74 | s | 0 | Vicic Group data | ||
95 | [PH3PCF2SPh]+[I-] | C25 H20 F2 I P S | CDCl3 | -69.1 | d | 92.8 | Journal of Fluorine Chemistry 220 (2019) 78–82 | ||
96 | [PH3PCF2SPhCl]+[Cl-] | C25 H19 Cl2 F2 P S | CDCl3 | -70.3 | d | 91.1 | Journal of Fluorine Chemistry 220 (2019) 78–82 | ||
97 | CF3CBr2CF2CF2CF3 | C5 Br2 F10 | -70.31 | tt | 4J(CF3-CF2) = 11 Hz; 5J(CF3-CF2) = 9 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | Ref. 51 gives -70.36, -104.36, -120.74, and -81.28 ppm, 4Js = 10 and 12 Hz. | ||
98 | [Ph3PCFBr2]+[Br]- | C19 H16 Br3 F P | not reported | -70.4 | d | 78 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
99 | CF3CBr2CF2CF3 | C4 Br2 F8 | -70.49 | tq | 4J(CF3-CF2) = 10.4 Hz; 5J(CF3-CF3) = 6.3 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
100 | CBrF2CF2CFCl2 | C3 Br Cl2 F5 | -70.54 | tt | 4J(CCl2F-CBrF2) = 14.5 Hz; 3J(CCl2F-CF2) = 7.6 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
101 | Me3Si-(CF(CF3)2) | C6 H9 F7 Si | CDCl3 | -70.85 | d | 11 | Tet. Lett. 2001, 42, 3267-3269 | ||
102 | C24 H26 F3 N2 O4 | DMSO -d6 | -71.3 | d | 9.4 | Tetrahedron Lett. 2022, 97, 153795 | |||
103 | CF3CBrClCClF2 | C3 Br Cl2 F5 | -71.41 | dd | 4J(CF3-Fb) = 12.2 Hz; 4J(CF3-Fa) = 11.6 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
104 | [PH3PCF2SePh]+[I-] | C25 H20 F2 I P Se | CDCl3 | -71.5 | d | 89.3 | Journal of Fluorine Chemistry 220 (2019) 78–82 | ||
105 | CF3CBr2CF3 | C3 Br2 F6 | -72 | s | Magn. Reson. Chem. 2004; 42: 534–555 | ||||
106 | CF3CBrClCF2CF3 | C4 Br Cl F8 | -72.35 | ddq | 4J(CF3-CF2(a)) = 11.0 Hz; 4J(CF3-CF2(2)) = 10.4 Hz; 5J(CF3-CF3) = 5.6 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
107 | CF3CF2CBr3 | C3 Br3 F5 | -73.14 | s? | Magn. Reson. Chem. 2004; 42: 534–555 | ||||
108 | CF3CF2CFBrCl | C3 Br Cl F6 | -73.39 | dqd = m | 3J(CFBrCl-CF2(a)-) = 11.5 Hz; 4J(CFBrCl-CF3-) = 10.5 Hz; 3J(CFBrCl-CF2(b)-) = 9.8 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | Decoupling the 77.28 ppm CF3 simplified the 73.39 ppm m to a dd with Js 3 9.8 and 11.7 Hz. The Cl isotope effect indicates one Cl (peak heights yield 75 and 25% vs 75.53 and 24.47% natural abundance of Cl isotopes). | ||
109 | CF3CF2CBr2Cl | C3 Br2 Cl F5 | -73.88 | s? | Magn. Reson. Chem. 2004; 42: 534–555 | The correct assignment of this component in a mixture as CF3CF2CBr2Cl rather than the isomer CF3CF2CBrCl2 is based on GC–MS (A. C. Sievert). | |||
110 | [Bu3PCFBr2]+[Br]- | C13 H27 Br3 F P | not reported | -74.6 | d | 64 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
111 | CF3COF | C2 F4 O | not reported | -74.9 | d | 7 | Journal of Fluorine Chemistry 1990, 49 (1), 43–66 | ||
112 | CF3CF2CFBr2 | C3 Br2 F6 | -75.1 | tq | 3J(CFBr2-CF2) = 14.0; 4J(CFBr2-CF3) = 10.9 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
113 | [(o-MeO-C6H4)Ph2PCFBr2]+ [Br]- | C20 H17 Br3 F O P | not reported | -75.3 | d | J(F,P) = 70 ; J(H,F) = 40 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
114 | CF3CF2CBr2CF2BrCF2 | C5 Br3 F9 | -75.21 | tt | 5J(CF3-CF2) = 7.8; 6J(CF3-CF2Br) = 2.6 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | Ref. 51 gives -70.36, -104.36, -120.74, and -81.28 ppm, 4Js = 10 and 12 Hz. | ||
115 | [NEt4] [CF3CO2] | C10 H20 F3 O2 | CD3CN | -75.8 | s | 0 | Inorg Chem. 2006, 45, 6435-6445 | ||
116 | [NEt4] [CF3CO2] | C10 H20 F3 O2 | CD2Cl2 | -75.9 | s | 0 | Inorg Chem. 2006, 45, 6435-6445 | ||
117 | CF3CBr2CF2CF3 | C4 Br2 F8 | -76.34 | q | 5J(CF3-CF3) = 6.3 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
118 | CF3CF2CFBr2 | C3 Br2 F6 | -76.64 | d | 4J(CF3-CFBr2) = 10.9 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
119 | CF3S(SO2)CF3 | C2 F6 O2 S2 | CDCl3 | -76.8 | q | 4.9 | Angew.Chem. Int.Ed. 2023, 62,e202306095 | ||
120 | Me3SiOCH(NMe2)CF3 | C6 H16 F3 N Si | CDCl3 | -77.2 | d | 5.8 | J. Fluorine Chem. 2001, 112, 283-286 | TMS-CF3 adduct of DMF | |
121 | CF3CF2CFBrCl | C3 Br Cl F6 | -77.28 | d | 4J(CF3-CFBrCl) = 10.5 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | Decoupling the 73.39 ppm CF resulted in the collapse of the 77.28 ppm d to an s. | ||
122 | C15 H10 F3 I O3 S | DMSO-d6 | -77.6 | s | 0 | J. Am. Chem. Soc. 2013, 135, 8782-8785 | |||
123 | CF3CH2OH | C2 H3 F3 O | not reported | -78 | t | 8.8 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | ||
124 | CF3SO2OH | C H F3 O3 S | D2O | -78.42 | s | 0 | Dalton Trans., 2013, 42, 4299–4305 | ||
125 | C10 H15 F6 N3 O4 S2 | D2O | -78.78 | s | 0 | Dalton Trans., 2013, 42, 4299–4305 | |||
126 | [NBu4] [CF3SO3] | C17 H36 F3 N O3 S | CD2Cl4 | -78.8 | s | 0 | Org. Lett. 2008, 10, 4867-4870 | ||
127 | CHF3 | C H F3 | CD3CN | -78.9 | d | 79.3 | J. Fluorine Chem. 2000, 106, 217-221 | ||
128 | CF3SO2NH2 | C H2 F3 N O2 S | D2O | -79.34 | s | 0 | Dalton Trans., 2013, 42, 4299–4305 | ||
129 | CHCl2F | C H Cl2 F | not reported | -80.3 | d | 54 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
130 | Me3Si-CF2CF2CF3 | C6 H9 F7 Si | CDCl3 | -80.8 | s | 0 | J. Org. Chem. 1991, 56, 984-989 | ||
131 | C8 H8 F2 O | CDCl3 | -80.9 | d | 74.7 | Org. Lett. 2021, 13, 5568-5571 | |||
132 | CF2=CH2 | C2 H2 F2 | not reported | -81 | dd | 3J(F-H) = 34; 3J(F-H) = 1 Hz | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | ||
133 | CF3CBr2CF2CF2CF3 | C5 Br2 F10 | -81.32 | t | 4J(CF3-CCF2) = 12.35 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | Ref. 51 gives -70.36, -104.36, -120.74, and -81.28 ppm, 4Js = 10 and 12 Hz. | ||
134 | Me3Si-CF2CF3 | C5 H9 F5 Si | n-hexane | -82.4 | s | 0 | Ang. Chem. Int. Ed. 2019, 58, 14633-14638 | C-F and Si-F coupling constants reported | |
135 | CHBr2Cl | C H Br2 Cl | not reported | -83.9 | d | 51 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
136 | CF3SOOH | C H F3 O2 S | D2O | -87.07 | s | 0 | Dalton Trans., 2013, 42, 4299–4305 | ||
137 | C2F6 | C2 F6 | THF-d8 | -87.74 | s | 0 | Vicic Group data | ||
138 | CH3CF2CN | C3 H3 F2 N | not reported | -85 | q | 18.1 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | ||
139 | C2F6 | C2 F6 | DMF-d7 | -88.07 | s | 0 | Vicic Group data | ||
140 | CH3-O-CF2CF3 | C3 H3 F5 O | CDCl3 | -87.2 | s | 0 | Inorganic Chemistry. 2002, 41 (23), 6118-6124 | ||
141 | CH3-O-CF2CF3 | C3 H3 F5 O | CDCl3 | -87.6 | s | 0 | Inorganic Chemistry. 2002, 41 (23), 6118-6124 | ||
142 | Ph-(CH2)5-O-CF2CF3 | C13 H15 F5 O | CDCl3 | -86.2 | s | 0 | J. Org. Chem. 2017, 82, 3702-3709. | ||
143 | 4-NO2-PhSeCF2H | C7 H5 F2 N O2 Se | CDCl3 | -89.8 | d | 54.6 | Tetrahedron, 2018, 74, 5642-5649 | ||
144 | PhSeCF2H | C7 H6 F2 Se | CDCl3 | -90.3 | d | 55 | Tetrahedron, 2018, 74, 5642-5649 | ||
145 | Ph-(CH2)5-O-CF2CF3 | C13 H15 F5 O | CDCl3 | -90.7 | s | 0 | J. Org. Chem. 2017, 82, 3702-3709. | ||
146 | 4-MeO-PhSeCF2H | C8 H8 F2 O Se | CDCl3 | -91.1 | d | 55.6 | Tetrahedron, 2018, 74, 5642-5649 | ||
147 | CF3CF2CBr2CF2BrCF2 | C5 Br3 F9 | -95.78 | qt | 5J(CF2-CF3) = 7.8; 4J(CF2-CF2) = 10 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | Ref. 51 gives -70.36, -104.36, -120.74, and -81.28 ppm, 4Js = 10 and 12 Hz. | ||
148 | C16 H17 F8 O3 P S | CDCl3 | -97.0, -98.0 | dd, dd | 233.5, 53.9 and 233.5, 53.9 | Chem. Commun., 2019, 55, 7446-7449 | CF2H resonances | ||
149 | (S)-2-amino-4-fluoro-pent-4-enoic acid | C5 H9 F N O2 | D2O | -98.4 | ddt | 18.0, 22.3, 50.8 | Asian. J. Org. Chem. 2014, 3, 1270-1272 | Fluorinated Asparagine Derivative | |
150 | CF2=CHF | C2 H1 F3 | not reported | -100 | ddd | 2J(F-F) = 87; 3J(F-F) = 33; 3J(F,H) = 13 Hz | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | F trans to H | |
151 | CF3CBr2CF2CF2CF3 | C5 Br2 F10 | -104.06 | qqt | 4J(CF2-CF3) = 12.35 Hz; 4J(CF2-CBr2CF3) = 11 Hz; 3J(CF2-CF2) | Magn. Reson. Chem. 2004; 42: 534–555 | Ref. 51 gives -70.36, -104.36, -120.74, and -81.28 ppm, 4Js = 10 and 12 Hz. | ||
152 | CF3CF2CBr2CF2BrCF2 | C5 Br3 F9 | -106.11 | tt | 5J(CF2-CF3) = 7.8; 6J(CF2-CF2Br) = 10 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | Ref. 51 gives -70.36, -104.36, -120.74, and -81.28 ppm, 4Js = 10 and 12 Hz. | ||
153 | CF3CBr2CF2CF3 | C4 Br2 F8 | -107.32 | q | 4J(CF2-CF3) = 10.4 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
154 | CF3CF2CBr3 | C3 Br3 F5 | -107.5 | s? | Magn. Reson. Chem. 2004; 42: 534–555 | ||||
155 | PhC(F)CH2 | C8 H7 F | CDCl3 | -108.4 | dd | 49.3, 17.7 | J. Org. Chem. 2009, 74, 8377-8380 | ||
156 | C13 H8 F2 O | CDCl3 | -108.74 | d | 56.5 | J. Am. Chem. Soc. 2016, 138, 2536-2539. | |||
157 | CF3CF2CBr2Cl | C3 Br2 Cl F5 | -109.37 | s? | Magn. Reson. Chem. 2004; 42: 534–555 | The correct assignment of this component in a mixture as CF3CF2CBr2Cl rather than the isomer CF3CF2CBrCl2 is based on GC–MS (A. C. Sievert). | |||
158 | CBrF2CF2CFCl2 | C3 Br Cl2 F5 | -110.4 | dt | 3J(CF2-CCl2F) = 7.6 Hz; 3J(CF2-CBrF2) = 1.7 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
159 | CF3CBrClCF2CF3 | C4 Br Cl F8 | -110.41 | dq | 2J(CF2(a)-CF2(b)) = 273.4 Hz; 4J(CF2(a)-CF3) = 11.0 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
160 | CF3CBrClCF2CF3 | C4 Br Cl F8 | -110.75 | dq | 2J(CF2(b)-CF2(a)) = 273.4 Hz; 4J(CF2(b)-CF3) = 10.4 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
161 | C13 H10 F2 | CDCl3 | -111.47 | d | 56.1 | J. Am. Chem. Soc. 2016, 138, 2536-2539. | |||
162 | C11 H8 F2 | CDCl3 | -111.66 | d | 56.4 | J. Am. Chem. Soc. 2016, 138, 2536-2539. | |||
163 | C14 H10 F2 O | CDCl3 | -112.9 | d | 55.9 | J. Am. Chem. Soc. 2016, 138, 2536-2539. | |||
164 | C6 H5 F2 N | CDCl3 | -113 | d | 55.4 | Nat. Commun. 2018, 9 (1), 1170. | |||
165 | CHF=CH2 | C2 H3 F | not reported | -113 | ddd | 2J(F-H) = 85; 3J(F-H) = 52; 3J(F-H) = 20 Hz | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | ||
166 | C9 H8 F2 O | CDCl3 | -113.15 | d | 56.1 | J. Am. Chem. Soc. 2016, 138, 2536-2539. | |||
167 | C10 H10 F2 O2 | CDCl3 | -113.31 | d | 56.3 | J. Am. Chem. Soc. 2016, 138, 2536-2539. | |||
168 | C9 H8 F2 O2 | CDCl3 | -113.41 | d | 56.9 | J. Am. Chem. Soc. 2016, 138, 2536-2539. | |||
169 | CBrF2CF2CF2Br | C3 Br2 F6 | -113.15 | t | 2.6 | Magn. Reson. Chem. 2004; 42: 534–555 | |||
170 | C8 H6 F2 O | CDCl3 | -114.03 | d | 56.2 | J. Am. Chem. Soc. 2016, 138, 2536-2539. | |||
171 | C9 H8 F2 O | CDCl3 | -114.03 | d | 56.1 | J. Am. Chem. Soc. 2016, 138, 2536-2539. | |||
172 | [Ph2SCH2CF2H][OTf] | C15 H13 F5 O3 S2 | CDCl3 | -114.2 | dt | 53.8, 15.0 | Chem. Commun., 2016, 52, 11893-11896 | CF2H resonance | |
173 | CF3CF2CFBr2 | C3 Br2 F6 | -115.31 | d | 3J(CF2-CFBr2) = 14.0 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
174 | Ph-F | C6 H5 F | C6D6 | -115.9 | m | 0 | Chem. Commun. 2010, 46, 5151-5153 | ||
175 | CBrF2CF2CF2Cl | C3 Br Cl F6 | -116 | tt | 3J(CF2-CF2Br) = 2.4; 3J(CF2-CF2Cl) = 1.7 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
176 | CF3CF2CFBrCl | C3 Br Cl F6 | -116.28 | dd | 2J(CF2(a)-CF2(b) = 271.1 Hz; 3J(CF2(a)-CFBrCl) = 11.5 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
177 | CF3CF2CFBrCl | C3 Br Cl F6 | -117.9 | dd | 2J(CF2(b)-CF2(a) = 271.1 Hz; 3J(CF2(b)-CFBrCl) = 9.8 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | |||
178 | C6 H4 F2 O2 | CDCl3 | -118.71 | d | 53.8 | J. Am. Chem. Soc. 2016, 138, 2536-2539. | |||
179 | CH3CH2CF2H | C3 H6 F2 | not reported | -120 | dt | 57, 17.5 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | ||
180 | CF3CBr2CF2CF2CF3 | C5 Br2 F10 | -120.39 | qt | 5J(CF2-CCCF3) = 9 Hz; 3J(CF2-CF2) = 5.5 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | Ref. 51 gives -70.36, -104.36, -120.74, and -81.28 ppm, 4Js = 10 and 12 Hz. | ||
181 | 1,1,2-Trifluoroethane | C2 H3 F3 | not reported | -121, -239 | 46, 18, 14, 7, 3.5 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | |||
182 | Me3Si-CF2CF2CF3 | C6 H9 F7 Si | CDCl3 | -124.1 | s | 0 | J. Org. Chem. 1991, 56, 984-989 | ||
183 | CBrF2CClFCF2Cl | C3 Br Cl2 F5 | -124.6 | dd | 3J(Fe-Fc) = 13.3 Hz; 3J(Fe-Fd) = 7 Hz | Magn. Reson. Chem. 2004; 42: 534–555 | Decoupling the 124.60 ppm F resulted in the collapse of the -58 ppm overlapping multiplets to two dd centered at 58.04 ppm (Js D 15.2 and 13.0 Hz) and at 58.08 ppm (Js D 18.3 and 12.4 Hz). The upfield part of the 62 ppm resonance showed a chlorine isotope effect indicating one Cl. | ||
184 | CF2=CHF | C2 H1 F3 | not reported | -126 | ddd | 3J(F-F) = 119; 2J(F-F) = 87; 3J(F,H) = 4 Hz | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | F cis to H | |
185 | CF2HCOOH | C2 H2 F2 O2 | -126.18 | d | 53.1 | Magn. Reson. Chem. 2004; 42: 534–555 | |||
186 | [Ph3P-F]+ | C18 H15 F | CD2Cl2 | -128.1 | d | 997 | Chem. Sci. 2015, 6, 2016-2021 | ||
187 | SFFS | F2 S2 | not reported | -128.8 | s | Inorg. Chem. 1990, 29, 2698-2701 | gas state | ||
188 | Me3Si-CF2CF2CF3 | C6 H9 F7 Si | CDCl3 | -129.7 | s | 0 | J. Org. Chem. 1991, 56, 984-989 | ||
189 | Me3Si-CF2CF3 | C5 H9 F5 Si | n-hexane | -131.9 | s | 0 | Ang. Chem. Int. Ed. 2019, 58, 14633-14638 | C-F and Si-F coupling constants reported | |
190 | CF2=CF2 | C2 F4 | acetone-d6 | -133.8 | s | 0 | Can. J. Chem. 2004, 82, 1186-1191 | ||
191 | perfluorocyclobutane | C4 F8 | CDCl3 | -134 | s | 0 | J. Fluorine Chem. 2016, 127, 79-84. | ||
192 | perfluorocyclobutane | C4 F8 | acetone-d6 | -135.5 | s | 0 | Can. J. Chem. 2004, 82, 1186-1191 | ||
193 | 1,1,2,2-tetrafluoroethane | C2 H2 F4 | -137.3 | dd | 2J(F,H) = 52; 3J(F,H) = 5 | Magn. Reson. Chem. 2004, 42 (6), 534–555. | |||
194 | SiF4 | F4 Si | not reported | -142 | s | Inorg. Chem. 1990, 29, 2698-2701 | |||
195 | [t-Bu3PCFHCl]+[Cl]- | C13 H28 Cl2 F P | not reported | -146.7 | dd | J(F,P) = 48 ; J(H,F) = 37 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
196 | CH2F2 | C H2 F2 | not reported | -148 | t | 50 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | ||
197 | [Bu3PCFPBu3]+[BF4]- | C25 H54 B F5 P2 | not reported | -150.1 | s | J. Org. Chem. 1988, 53, 2, 366–374 | |||
198 | [Ph3PCFPPh3]+[BF4]- | C37 H30 B F5 P2 | not reported | -150.1 | s | J. Org. Chem. 1988, 53, 2, 366–374 | |||
199 | [(o-MeO-C6H4)3PCFHBr]+ [Br]- | C22 H22 Br2 F O3 P | not reported | -151.0 | dd | J(F,P) = 84 ; J(H,F) = 44 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
200 | [NBu4][HF2] | C16 H37 F2 N | CD2Cl2 | -151.5 | d | 123 | J. Fluorine. Chem. 2006, 127, 920-923 | ||
201 | [i-Pr3PCFHCl]+[Cl]- | C10 H22 Cl2 F P | not reported | -154.2 | dd | J(F,P) = 51 ; J(H,F) = 40 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
202 | (CH3)3SiF | C3 H9 F Si | not reported | -155 | s | Inorg. Chem. 1990, 29, 2698-2701 | |||
203 | perfluorocyclopropane | C3 F6 | CH3CN | -156.5 | s | J. Fluorine Chem. 2000, 106, 217-221 | |||
204 | [Et3PCFHCl]+[Cl]- | C7 H16 Cl2 F P | not reported | -156.7 | dd | J(F,P) = 55 ; J(H,F) = 44 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
205 | cyclobutyl fluoride | C4 H7 F | CDCl3 | -160 | dm | 55 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | ||
206 | Me3Si-F | C3 F9 F Si | CDCl3 | -160.5 | decet | 7.3 | Inorg. Chem. 1988, 27, 2913-2916 | ||
207 | [(o-MeO-C6H4)Ph2PCFHBr]+ [Br]- | C20 H18 Br2 F O P | not reported | -161.1 | dd | J(F,P) = 70 ; J(H,F) = 40 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
208 | hexafluorobenzene | C6 F6 | not reported | -162 | s | 0 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | ||
209 | [Bu3PCFHBr]+[Br]- | C13 H28 Br2 F P | not reported | -162.7 | dd | J(F,P) = 56 ; J(H,F) = 44 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
210 | [Ph3PCFHBr]+[Br]- | C19 H16 Br2 F P | not reported | -163.9 | dd | J(F,P) = 70 ; J(H,F) = 40 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
211 | CHF=CHF (cis isomer) | C2 H2 F2 | not reported | -165 | ddd | 2J(F-H) = 73; 3J(F-H) = 20; 3J(F-F) = 19 Hz | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | ||
212 | SF2 | F2 S | not reported | -167 | s | Inorg. Chem. 1990, 29, 2698-2701 | gas state | ||
213 | CH2=CHCFHCH3 | C4 H7 F | not reported | -170 | dm | 48 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | ||
214 | 2-fluoropentane | C5 H11 F | CD2Cl2 | -172.8 | m | 0 | J. Org. Chem. 1980, 45, 3476-3483 | ||
215 | 3-fluoropentane | C5 H11 F | CD2Cl2 | -182.7 | m | 0 | J. Org. Chem. 1980, 45, 3476-3483 | ||
216 | CHF=CHF (trans isomer) | C2 H2 F2 | -186 | ddd | 3J(F,F) = 125 ; 2J(F,H) = 74; 3J(F,H) = 4 Hz | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | |||
217 | (CH3)2PF | C2 F7 P | not reported | -196 | s | Inorg. Chem. 1990, 29, 2698-2701 | |||
218 | CF2=CHF | C2 H1 F3 | not reported | -205 | ddd | 3J(F-F) = 119; 2J(F-H) = 71; 3J(F,F) = 33 Hz | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | ||
219 | Me3Si-(CF(CF3)2) | C6 H9 F7 Si | CDCl3 | -208.11 | m | 0 | Tet. Lett. 2001, 42, 3267-3269 | ||
220 | [Ph3PCFHPPh3]2+ 2[Br]- | C37 H31 Br2 F P2 | not reported | -210.6 | td | J(F,P) = 59 ; J(H,F) = 40 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
221 | CH3-CH2F | C2 H5 F | CD2Cl2 | -211.5 | td | 48.5, 25 | J. Org. Chem. 1980, 45, 3476-3483 | ||
222 | Fluoroethane | C2 H5 F | not reported | -212 | 48.5, 27 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | pg 77 | ||
223 | cyclopropyl fluoride | C3 H5 F | not reported | -213 | ddd | 65, 22, 10 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | ||
224 | [Ph3PCFHPBu3]2+ 2[Br]- | C31 H43 Br2 F P2 | not reported | -215 | ddd | J(F,PPh3) = 59 ; J(F,PBu3) = 50; J(H, F) = 39 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
225 | [Ph3PCFHPEt3]2+ 2[Br]- | C25 H32 Br2 F P2 | not reported | -215.2 | ddd | J(F,PPh3) = 59 ; J(F,PEt3) = 49; J(H, F) = 39 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
226 | [Ph3PCFHPOc3]2+ 2[Br]- | C43 H67 Br2 F P2 | not reported | -215.4 | ddd | J(F,PPh3) = 59 ; J(F,POc3) = 49; J(H, F) = 37 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
227 | (CF3)2PF | C2 F7 P | not reported | -218 | s | Inorg. Chem. 1990, 29, 2698-2701 | |||
228 | [Bu3PCFHPBu3]2+ 2[Cl]- | C25 H55 Cl2 F P2 | not reported | -221.6 | td | J(F,P) = 51 ; J(H,F) = 42 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
229 | [Bu3PCFHPBu3]2+ 2[Br]- | C25 H55 Br2 F P2 | not reported | -222.4 | td | J(F,P) = 50 ; J(H,F) = 42 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
230 | 1,2-Difluoroethane | C2 H4 F2 | not reported | -226 | 45, 17 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | pg 77 | ||
231 | [Ph3PCFH2]+[Br]- | C19 H17 Br F P | not reported | -244.3 | dt | J(F,P) = 56 ; J(H,F) = 44 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
232 | [t-Bu3PCFH2]+[Cl]- | C13 H29 Cl F P | not reported | -247.4 | dd | J(F,P) = 45 ; J(H,F) = 35 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
233 | [Bu3PCFH2]+[Cl]- | C13 H29 Cl F P | not reported | -250.1 | dt | J(F,P) = 53 ; J(H,F) = 44 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
234 | [i-Pr3PCFH2]+[Cl]- | C10 H23 Cl F P | not reported | -252 | dt | J(F,P) = 44 ; J(H,F) = 44 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
235 | [Ph3PCFPPh3]+[BF4]- | C37 H30 B F5 P2 | not reported | -262.1 | t | 49 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
236 | [Ph3PCFPPh3]+[Br]- | C37 H30 Br F P2 | not reported | -262.8 | t | 49 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
237 | CH3F | C H3 F | CH2Cl2 | -268 | q | 46 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | ||
238 | [Ph3PCFPBu3]+[Br]- | C31 H42 Br F P2 | not reported | -268.4 | dd | J(F,PBu3) = 39 ; J(F,PPh3) = 49 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
239 | [Ph3PCFPOc3]+[Br]- | C43 H66 Br F P2 | not reported | -269.0 | dd | J(F,POc3) = 41 ; J(F,PPh3) = 47 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
240 | [Ph3PCFPEt3]+[Br]- | C25 H30 Br F P2 | not reported | -271.4 | dd | J(F,PEt3) = 39 ; J(F,PPh3) = 49 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
241 | [Bu3PCFPBu3]+[Br]- | C25 H54 Br F P2 | not reported | -283.8 | t | 42 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
242 | [Bu3PCFPBu3]+[BF4]- | C25 H54 B F5 P2 | not reported | -284.5 | t | 42 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
243 | [Bu3PCFPBu3]+[Cl]- | C25 H54 Cl F P2 | not reported | -285 | t | 42 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
244 | [Et3PCFPEt3]+[Cl]- | C13 H30 Cl F P2 | not reported | -288.8 | t | 41 | J. Org. Chem. 1988, 53, 2, 366–374 | ||
245 | CF3SF | C F4 S | not reported | -351 | s | Inorg. Chem. 1990, 29, 2698-2701 |
1 | Compound | Formula | Solvent | Chemical Shift (vs CFCl3 = 0) | Splitting Pattern | Coupling Constant in Hz (0 if not observed or m) | Literature Reference or Group data | Notes |
---|---|---|---|---|---|---|---|---|
2 | MoF6 | F6 Mo | not reported | 278 | s | 0 | CAS Fluorine-19 NMR Spectrum for 7783-77-9 | |
3 | WF6 | F6 W | not reported | 165 | s | 0 | Chem. Rev. 2015, 115, 1296-1306 | |
4 | SOF2 | F2 O S | not reported | 74.5 | s | 0 | Angew Chem. Int. Ed. 2012, 51, 7847-7849 | |
5 | SF6 | F6 S | D2O | 58.14 | s | 0 | Chem. Commun. 2011, 47, 457-459 | |
6 | SeF6 | F6 Se | not reported | 54 | s | 0 | Chem. Rev. 2015, 115, 1296-1306 | |
7 | SO2F2 | F2 O2 S | not reported | 33.5 | s | 0 | Angew Chem. Int. Ed. 2012, 51, 7847-7849 | |
8 | [PF4]- | F4 P | CH3CN | 9.3 | dt | 660, 108 | J. Am. Chem. Soc. 1994, 116, 2850-2858 | axial fluorine |
9 | BaF2 | Ba F2 | not reported | -13 | s | 0 | Angew Chem. Int. Ed. 2012, 51, 7847-7849 | |
10 | Cis-Pt(CF3)2(DMSO)2 (DMSO bound by O and S) | CDCl3 | -18.3 (trans to O bound DMSO) -30.3 (trans to S bound DMSO) | |||||
11 | C52 H40 F12 Ni O4 P2 S | MeCN - d3 | -19.15, -30.6 | sept, sept | 7.3, 7.3 | Inorg. Chem. 2020, 59, 9143-9151 | ||
12 | [Ni(CF3)4(MeCN)2] | C8 H6 F12 N2 Ni | MeCN - d3 | -19.2, -30.07 | sept, sept | 7.2, 7.2 | Angew. Chem. Int. Ed. 2021, 60, 18162-18167 | |
13 | [(MeCN)Ni(CF3)5]- | C7 H3 F15 N Ni | MeCN - d3 | -19.6, -28.8 | app. undecet, q | 8.2, 8.2 | Angew. Chem. Int. Ed. 2021, 60, 18162-18167 | |
14 | CsOCF3 | C Cs F3 O | THF | -21 | br s | 0 | Angew Chem. Int. Ed. 2019, 58, 2392-2396 | |
15 | [NBu4]2[(PhO)Ni(CF3)3] | C41 H77 F9 N2 Ni O | MeCN - d3 | -21.2, -31.3 | sept, q | 4.1, 4.1 | Inorg. Chem. 2020, 59, 9143-9151 | |
16 | ||||||||
17 | AgCF3 | C Ag F3 | dmf | -22.4 | d | 121.7 | Inorg. Chem. 1997, 36, 1464-1475 | Ag-F coupling constant |
18 | Cis-Pt(CF3)2(NCCH3)(OC(CH3)2) | (CD3)2CO | -22.8 (trans to (CH3)2CO) -30.0 (trans to NCCH3) | |||||
19 | Pt(CF3)2(en) | (CD3)2CO | -23.7 | |||||
20 | C7 H2 F15 N Ni | MeCN - d3 | -24.3, -27.4 | app. septet, q | 7.5, 7.5 | Angew. Chem. Int. Ed. 2021, 60, 18162-18167 | ||
21 | Pt(CF3)2(tmen) | (CD3)2CO | -24.5 | |||||
22 | [Ni(CF3)6]2- | C6 F18 Ni | MeCN - d3 | -25.1 | s | 0 | Angew. Chem. Int. Ed. 2021, 60, 18162-18167 | putative |
23 | cis-Pt(CF3)2(DMSO)2 (Both DMSO bound by S) | CDCl3 | -25.2 | |||||
24 | Pt(CF3)2(bipy) | (CD3)2CO | -25.2 | |||||
25 | [NMe4][(MeCN)Ni(CF3)3] | C9 H15 F9 N2 Ni | MeCN - d3 | -25.2, -31.04 | sept, q | 4.4, 4.4 | Angew. Chem. Int. Ed. 2021, 60, 18162-18167 | |
26 | [Ag(CF3)2]- | C2 Ag F6 | dmf | -25.3 | d | 100.1 | Inorg. Chem. 1997, 36, 1464-1475 | Ag-F coupling constant |
27 | Cis-Pt(CF3)2(NCCH3)2 | CD3CN | -26.1 | 859.4 | ||||
28 | C52 H40 F12 Ni P2 | MeCN - d3 | -26.24 | s | 0 | Inorg. Chem. 2020, 59, 9143-9151 | ||
29 | Cis-Pt(CF3)2(DMSO)2 | (CD3)2CO | -26.4 | 864.3 | ||||
30 | Cis-Pt(CF3)2(NH3)2 | (CD3)2CO | -26.5 | |||||
31 | AgOCF3 | C Ag F3 O | CD3CN | -26.8 | s | 0 | Organometallics 2012, 31, 7812-7815 | |
32 | Cis-Pt(CF3)2py2 | (CD3)2CO | -26.9 | |||||
33 | [Cu(CF3)(I)]- | C Cu F3 I | CDCl3 | -27.8 | s | 0 | J. Am. Chem. Soc. 2021, 143, 14367-14378 | |
34 | [(MeCN)2Ni(CF3)2 | C6 H6 F6 N2 Ni | MeCN - d3 | -27.8 | s | 0 | Angew. Chem. Int. Ed. 2021, 60, 18162-18167 | |
35 | [Cu(Cl)(CF3)]- | C49 H56 F3 Cl Cu2 | CD2Cl2 | -28.17 | s | 0 | J. Fluorine Chem. 2020, 234, 109518 | |
36 | [Cu(CF3)2] | C2 Cu F6 | CD2Cl2 | -32.06 | s | 0 | J. Fluorine Chem. 2020, 234, 109518 | |
37 | [Cu(CF3)(CF2CF3)]- | C3 Cu F8 | CD2Cl2 | -32.14 | s | 0 | J. Fluorine Chem. 2020, 234, 109518 | |
38 | [Ag(CF3)4]- | C4 Ag F12 | MeCN | -32.3 | d | 40.7 | Chem. Eur. J. 2021, 27, 15396-15405 | |
39 | [(SIMes)Cu(CF3)] | C24 H28 Cu F3 | CD2Cl2 | -33.25 | s | 0 | J. Fluorine Chem. 2020, 234, 109518 | |
40 | Pt(CF3)2(NBD) | (CD3)2CO | -35.1 | |||||
41 | [PF4]- | F4 P | CH3CN | -46.3 | dt | 1405, 108 | J. Am. Chem. Soc. 1994, 116, 2850-2858 | equatorial F |
42 | TeF6 | F6 Te | not reported | -56.4 | s | 0 | Chem. Rev. 2015, 115, 1296-1306 | |
43 | (NHC)2 Ni(F) (CF2Ph) | C25 H37 F3 N4 Ni | THF-d8 | -71.7 | d | 17 | J. Am. Chem. Soc. 2020, 142, 19360-19367 | Ni-CF2Ph resonance |
44 | [PPh4][(Tp)Co(CF2CF3)] | C39 H30 B Co F15 N6 P | MeCN - d3 | -78.7 | s | 0 | Helv. Chim. Acta 2020, 103, e2000149 | |
45 | [NMe4][(MeCN)Ni(CF2CF3)3] | C12 H15 F15 N2 Ni | MeCN - d3 | -79 | q | 8.6 | Angew. Chem. Int. Ed. 2021, 60, 18162-18167 | |
46 | [(terpyridine)Co(CF2CF3)3] | C21 H11 Co F15 N3 | CD2Cl2 | -79.07 | p | 14.8 | Organometallics 2019, 38, 3169-3173 | |
47 | [mer-(MeCN)(bipyridine)Co(CF2CF3)3] | C18 H11 Co F15 N3 | MeCN - d3 | -79.63 | app sept | 12.1 | Organometallics 2019, 38, 3169-3173 | |
48 | [(terpyridine)Co(CF2CF3)3] | C21 H11 Co F15 N3 | CD2Cl2 | -80.78 | t | 8.5 | Organometallics 2019, 38, 3169-3173 | |
49 | [fac-(MeCN)3Co(CF2CF3)3] | C12 H9 Co F15 N3 | MeCN - d3 | -81.1 | s | 0 | Organometallics 2019, 38, 3169-3173 | |
50 | [NMe4][(MeCN)Ni(CF2CF3)3] | C12 H15 F15 N2 Ni | MeCN - d3 | -81.2 | t | 5.6 | Angew. Chem. Int. Ed. 2021, 60, 18162-18167 | |
51 | [mer-(MeCN)(bipyridine)Co(CF2CF3)3] | C18 H11 Co F15 N3 | MeCN - d3 | -81.72 | t | 5.5 | Organometallics 2019, 38, 3169-3173 | |
52 | [Cu(CF3)(CF2CF3)]- | C3 Cu F8 | CD2Cl2 | -84.98 | s | 0 | J. Fluorine Chem. 2020, 234, 109518 | |
53 | [Cu(CF2CF3)2]- | C4 Cu F10 | CD2Cl2 | -85.01 | s | 0 | J. Fluorine Chem. 2020, 234, 109518 | |
54 | [Cu(Cl)(CF2CF3)]- | C2 Cl Cu F5 | CD2Cl2 | -85.1 | s | 0 | J. Fluorine Chem. 2020, 234, 109518 | |
55 | [(SIMes)Cu(CF2CF3)] | C25 H28 Cu F5 | CD2Cl2 | -85.64 | s | 0 | J. Fluorine Chem. 2020, 234, 109518 | |
56 | [PPh4][(Tp)Co(CF2CF3)3] | C39 H30 B Co F15 N6 P | MeCN - d3 | -90.3 | s | 0 | Helv. Chim. Acta 2020, 103, e2000149 | |
57 | [mer-(MeCN)(bipyridine)Co(CF2CF3)3] | C18 H11 Co F15 N3 | MeCN - d3 | -93.86 | m | 0 | Organometallics 2019, 38, 3169-3173 | m spans range |
58 | [fac-(MeCN)3Co(CF2CF3)3] | C12 H9 Co F15 N3 | MeCN - d3 | -95.6 | s | 0 | Organometallics 2019, 38, 3169-3173 | |
59 | [(terpyridine)Co(CF2CF3)3] | C21 H11 Co F15 N3 | CD2Cl2 | -96.08 | m | 0 | Organometallics 2019, 38, 3169-3173 | m spans range |
60 | [NMe4][(MeCN)Ni(CF2CF3)3] | C12 H15 F15 N2 Ni | MeCN - d3 | -97.2 | m | 0 | Angew. Chem. Int. Ed. 2021, 60, 18162-18167 | m spans range |
61 | [mer-(MeCN)(bipyridine)Co(CF2CF3)3] | C18 H11 Co F15 N3 | MeCN - d3 | -99.93 | m | 0 | Organometallics 2019, 38, 3169-3173 | m spans range |
62 | [mer-(MeCN)(bipyridine)Co(CF2CF3)3] | C18 H11 Co F15 N3 | MeCN - d3 | -100.71 | m | 0 | Organometallics 2019, 38, 3169-3173 | m spans range |
63 | [(terpyridine)Co(CF2CF3)3] | C21 H11 Co F15 N3 | CD2Cl2 | -103.84 | m | 0 | Organometallics 2019, 38, 3169-3173 | m spans range |
64 | [mer-(MeCN)(bipyridine)Co(CF2CF3)3] | C18 H11 Co F15 N3 | MeCN - d3 | -104.82 | m | 0 | Organometallics 2019, 38, 3169-3173 | m spans range |
65 | [mer-(MeCN)(bipyridine)Co(CF2CF3)3] | C18 H11 Co F15 N3 | MeCN - d3 | -105.53 | m | 0 | Organometallics 2019, 38, 3169-3173 | m spans range |
66 | [(MeCN)2Ni(C4F8)] | MeCN - d3 | -106.0, -139.4 | s, s | 0 | Organometallics, 2013, 32, 7552-7558 | ||
67 | CaF2 | Ca F2 | not reported | -107 | s | 0 | Angew Chem. Int. Ed. 2012, 51, 7847-7849 | |
68 | [NMe4][(MeCN)Ni(CF2CF3)3] | C12 H15 F15 N2 Ni | MeCN - d3 | -108.4 | m | 0 | Angew. Chem. Int. Ed. 2021, 60, 18162-18167 | m spans range |
69 | [Cu(Cl)(CF2CF3)]- | C2 Cl Cu F5 | CD2Cl2 | -113.56 | s | 0 | J. Fluorine Chem. 2020, 234, 109518 | |
70 | [Cu(CF3)(CF2CF3)]- | C3 Cu F8 | CD2Cl2 | -118.01 | s | 0 | J. Fluorine Chem. 2020, 234, 109518 | |
71 | [Cu(CF2CF3)2]- | C4 Cu F10 | CD2Cl2 | -118.04 | s | 0 | J. Fluorine Chem. 2020, 234, 109518 | |
72 | [(SIMes)Cu(CF2CF3)] | C25 H28 Cu F5 | CD2Cl2 | -119.43 | s | 0 | J. Fluorine Chem. 2020, 234, 109518 | |
73 | F- | F | D2O | -121.4 | s | 0 | Dalton Trans., 2013, 42, 4299–4305 | |
74 | C14 H26 F4 N4 O2 Zn | CD2Cl2 | -128.83 | d | 39.4 | J. Am. Chem. Soc. 2016, 138, 2536-2539. | ||
75 | SiF6 2- | F6 Si | D2O | -130.5 | s | 0 | Dalton Trans., 2013, 42, 4299–4305 | |
76 | [PF6]- | F6 P | THF-d8 | -138.4 | d | 255.2 | Organometallics 2021, 40, 3585-3590 | Counter-ion for cobalt complex |
77 | Difluoromethyl Trimethyl silane | -140 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | |||||
78 | HF2 - | H F2 | D2O | -150 | s | 0 | Dalton Trans., 2013, 42, 4299–4305 | |
79 | [BF4]- | B F4 | CD3CN | -152 | s | 0 | Organometallics 2021, 40, 3585-3590 | Counter-ion for cobalt complex; -152.16 in CD2Cl2 solvent as counterion for Ni2(µ-F)2(dtbpe) see Inorg. Chim. Acta, 2011, 376, 118-122 |
80 | C52 H96 F2 Ni2 P4 (without counterion) or C52 H96 B F6 Ni2 P4 (with counterion) | CD2Cl2 | -152.1 | s | 0 | Inorganica Chimica Acta 2011, 376 ,118–122. | ||
81 | BF3 OEt2 | C4 H10 B F3 | not provided | -154 | s | 0 | Dolbier, W. R. Guide to Fluorine NMR for Organic Chemists, 2nd Edition; John Wiley & Sons, Inc., 2016 | |
82 | SiF4 | F4 Si | MeCN/CH2Cl2 | -162 | s | 0 | Can. J. Chem. 1977, 55, 3845-3849 | will have Si-F couplings too |
83 | HF | H F | not provided | -200 | s | 0 | Angew Chem. Int. Ed. 2012, 51, 7847-7849 | -164.4 ppm in D2O (ref: Dalton Trans., 2013, 42, 4299–4305) |
84 | F2O | F2 O | not provided | -248 | s | 0 | Angew Chem. Int. Ed. 2012, 51, 7847-7849 | |
85 | C25 H37 F3 N4 Ni | THF-d8 | -351.6 | t | 17 | J. Am. Chem. Soc. 2020, 142, 19360-19367 | Ni-F resonance | |
86 | F2 (liquid) | F2 | not provided | -422 | s | 0 | Angew Chem. Int. Ed. 2012, 51, 7847-7849 | |
87 | C60 H40 Co F32 P2 | CD2Cl2 | -427.3 | s | 0 | J. Organomet. Chem. 2021, 949, 121974 | bridging F resonance |
1 | Compound | Formula | Solvent | Chemical Shift (vs CFCl3 = 0) | Splitting Pattern | Coupling Constant in Hz (0 if not observed or m) | Literature Reference or Group data | Notes |
---|---|---|---|---|---|---|---|---|
2 | Alanine derivatives | |||||||
3 | Fmoc-beta- fluoroalanine | C18 H15 F2 N O4 | CD3OD | -126.15 | ddd | 279.7, 56.8, 7.1 | Org. Lett. 2007, 9, 41–44 | Fluorinated Alanine Derivative |
4 | Cbz-(2R)-3-flluoroalanine | C11 H12 F1 N1 O4 | CDCl3 | -229.7 to -231.3 | m | 0 | Org. Lett. 2006, 8(25), 5849-5852 | Fluorinated Alanine Derivative |
5 | Cbz-(2S)-3-flluoroalanine | C11 H12 F1 N1 O4 | CDCl3 | -229.8 to -231.3 | m | 0 | Org. Lett. 2006, 8(25), 5849-5852 | Fluorinated Alanine Derivative |
6 | ||||||||
7 | Aspartic acid derivatives | |||||||
8 | (2S, 3 R) 3-fluoro-D-aspartic acid | D2O+ DCl | -196.6 | dd | 29, 44 | https://doi.org/10.1016/0040-4039(96)01044-1 | Fluorinated Aspartic Acid Derivative | |
9 | (2S, 3 S) 3-fluoro-D-aspartic acid | D2O+ DCl | -198.5 | dd | 29, 48 | https://doi.org/10.1016/0040-4039(96)01044-1 | Fluorinated Aspartic Acid Derivative | |
10 | ||||||||
11 | Arginine derivatives | |||||||
12 | 4,4- Difluoro-L-Arginine Acetate | C6 H13 F2 N4 O2 | D2O | -102.7 to -105.1 | m | 0 | Bioorg. Med. Chem. Lett. 2009. 19, 1758–1762 | Fluorinated Arginine Derivative |
13 | ||||||||
14 | Cysteine derivatives | |||||||
15 | S-CF3-L-Cysteine | D2O | -41.4 | s | 0 | Fluorinated Cysteine Derivative | ||
16 | ||||||||
17 | Glutamine derivatives | |||||||
18 | Erythro- 4-fluoroglutamine | C5 H9 F N2 O3 | D2O | −186.4 | ddd | 48.9, 37.6, 15.6 | Journal of Fluorine Chemistry, 2000, 1,5-10 | |
19 | Threo-4-fluoroglutamine | C5 H9 F N2 O3 | D2O | −186.3 | ddd | 48.8, 30.3, 22.9 | Journal of Fluorine Chemistry, 2000, 1,5-10 | |
20 | dl-4,4-Difluoroglutamine | C5 H8 F2 N2 O3 | D2O | −30.6, −28.9, | ddd, ddd | 12.7, 24.9, 256 9.9, 25.9, 256 | J. Org. Chem. 1996, 61, 7, 2497–2500 | |
21 | ||||||||
22 | ||||||||
23 | Glutamic acid derivatives | |||||||
24 | 3-fluoroglutamic acids | C5 H8 F N O4 | H2O, C2F3O2- | -154 | 12 | J. Org. Chem. 1985, 50, 17, 3163–3167 | ||
25 | 4-fluoro-l-glutamic acid | C5 H8 F N O4 | ||||||
26 | (2S)-4,4-Difluoroglutamic Acid | C5 H7 F2 N O4 | D2O | −103.36, −104.45 | ddd, ddd | 2JFF = 251.8 Hz, 3JHF = 21.3, 12.8, 2JFF = 251.8 Hz, 3JHF = 19.2, 14.9 | J. Org. Chem. 2001, 66, 19, 6381–6388 | |
27 | ||||||||
28 | Glycine derivatives | |||||||
29 | ||||||||
30 | ||||||||
31 | Histidine derivatives | |||||||
32 | 2-Fluoro-L-histidine | C6 H8 F N3 O2 | H2O | 59.8 | ||||
33 | 4-fluorohistidine | C6 H8 F N3 O2 | H2O | -68.31 | ||||
34 | 4-(Trifluoromethyl)phenyl-histidine | |||||||
35 | ||||||||
36 | Isoleucine derivatives | |||||||
37 | (2S,3S)-3'-fluoroisoleucine | |||||||
38 | 4-fluoroisoleucine | |||||||
39 | 4′,4′,4′-trifluoroisoleucine | |||||||
40 | 5,5,5-trifluoroisoleucine | |||||||
41 | ||||||||
42 | ||||||||
43 | ||||||||
44 | ||||||||
45 | Leucine derivatives | |||||||
46 | (S)-2-Amino-5-fluoro-4(fluoromethyl) pentanoic acid hydrochloride | C6 H12 Cl F2 O2 | CD3OD | -230.36, -230.50 | td | 46.8, 20.5 and 46.3, 21.8 | Org. Biomol. Chem., 2022,20, 2424-2432 | |
47 | (S)-2(tert-butyloxycarbonyl)amino-4,5-difluoro-4(fluoromethyl)pentanoic acid | C11 H17 F3 N1 O4 | CD3OD | -174.11, -236.16, -236.95 | -174.11(m), -236.16(td), -236.95(td) | -236.16(td, 47.1, 12.4), -236.95(td, 47.0, 12.2) | Org. Biomol. Chem., 2022,20, 2424-2432 | |
48 | (2S,4S)-5,5,5-Trifluoroleucine | https://pubs.acs.org/doi/10.1021/jo900654y | ||||||
49 | ||||||||
50 | ||||||||
51 | Lysine derivatives | |||||||
52 | (5S)-N6-(iminoethyl)-5-fluoro-L-lysine hydrochloride | C8 H15 F1 N3 O2 | D2O, CFCl3 | -187.5 | J. Med. Chem. 2004, 47, 4, 900–906 | |||
53 | N6-(iminoethyl)-4,4-difluoro-L-lysine dihydrochloride | C8 H15 F2 N3 O2 | D2O | -98.2 | Org. Biomol. Chem., 2003,1, 3527-3534 | |||
54 | ||||||||
55 | Methionine derivatives | |||||||
56 | L-Trifluoromethionine | C5 H8 F3 N1 O2 S1 | D2O | -41.3 | s | J. of Fluorine Chem., 2011, 132, 3, 186-189 | ||
57 | L-pentafluoroethionine | C5 H8 F5 N1 O2 S1 | D2O | -93.8, -85.3 | s,s | Patent US20110015433 | ||
58 | N-Boc-L-trifluoromethionine | C10 H16 F3 N1 O4 S1 | CDCl3 | -42 | s | Patent US20110015433 | ||
59 | ||||||||
60 | Phenylalanine derivatives | |||||||
61 | 2-Amino-3,3-difluoro-3-(4-fluorophenyl)propionic acid | C9 H9 F2 N1 O2 | CD3OD | -90.4, -109.3 | dd | 250.3, 4.8 and 250.3, 21.1 | Tetrahedron, 2004, 60, 35, 7731-7742 | |
62 | (2R,3S)-2-Amino-3-fluoro-3-phenylpropanoic acid [(2R,3S)-β-fluorophenylanaline] | C9 H10 F1 N1 O2 | MeOH-d4 | -188.3 | Org. Lett. 2015, 17, 9, 2254–2257 | |||
63 | ||||||||
64 | Proline derivatives | |||||||
65 | Methyl (2S,4S)-N-acetyl-4-trifluoromethylprolinate | C9 H12 F3 N1 O3 | D2O | -71.0 (major), -71.3 (minor) | d | 9, 10 | Org. Biomol. Chem., 2015,13, 3171-3181 | |
66 | Methyl (2S,4S)-N-acetyl-4-trifluoromethylprolinate | C9 H12 F3 N2 O3 | DMSO-d6 | -69.4 (major), -69.9 (minor) | d | 9, 11 | Org. Biomol. Chem., 2015,13, 3171-3181 | |
67 | Ethyl trans-3-(perfluoroethyl)pyrrolidine-2-carboxylate hydrochloride | C9 H13 Cl1 F5 N1 O2 | CD3OD | -84.51 (s), -118.38 (dd), -124.13 (dd) | s, dd, dd | -84.51 (s, CF3), -118.38 (dd, 273.0, 13.1, FA of CF2), -124.13 (dd, 273.0, 19.2, FB of CF2) | Chem. Commun., 2018,54, 9683-9686 | |
68 | trans-3-(Difluoromethyl)-3-hydroxypyrrolidine-2-carboxylic acid hydrochloride | C6 H10 Cl1 F2 N1 O3 | CD3OD | -129.05, -132.61 | dd | 290, 54.4 and 290, 54.5 | Chem. Commun., 2018,54, 9683-9686 | |
69 | ||||||||
70 | Serine derivatives | |||||||
71 | N-(11-F-hexyl)-undecanoyl)-(L)-serine hexadecylamide | C36 H59 F13 N2 O3 | Tetrahedron. 1995, 51, 13073-13088 | |||||
72 | N-(11-(F-butyl)-undecanoyl)-L-serine11-(F-butyl)-undecylamide | C33 H48 F13 N2 O3 | CDCl3 | -81.6 (3F, CF3) | Tetrahedron. 1995, 51, 13073-13088 | |||
73 | -115.1 (2F, CF2CH2) | |||||||
74 | -125.0 (2F, CF2CF2CH2) | |||||||
75 | -126.6 (2F, CF3CF2) | |||||||
76 | N-(11-(F-hexyl)-undecanoyl)-L-serine11-(F-butyl)-undecylamide | C35 H48 F22 N2 O3 | CDCl3/CDOD | -81.4, -81.6 (3F, 3F, CF3) | Tetrahedron. 1995, 51, 13073-13088 | |||
77 | -115.0 (4F, CF2CH2) | |||||||
78 | -122.5, -123.4, -124.1, 125.0 (2F, 2F, 2F, 2F (CF2)3F2CH2) | |||||||
79 | -126.6 (4F, CF3CF2). | |||||||
80 | N-(11-(F-hexyl)-undecanoyl)-L-serine11-(F-hexyl)-undecylamide | C37 H48 F26 N2 O3 | CDCl3/CDOD | -81.3 (3F, CF3) | Tetrahedron. 1995, 51, 13073-13088 | |||
81 | -114.9 (2F, CF2CH2) | |||||||
82 | 122.4, -123.4, -124.1 (2F, 2F, 2F, (CF2)3CF2CH2) | |||||||
83 | -126.6 (2F, CF3CF2) | |||||||
84 | 8a (see Tetrahedron. 1995, 51, 13073-13088) | C43 H65 F13 N2 O3 | CDCl3 | -81.3 (3F, CF3) | Tetrahedron. 1995, 51, 13073-13088 | |||
85 | -114.9 (2F, CF2CH2) | |||||||
86 | 122.4, -123.4, -124.1 (2F, 2F, 2F, (CF2)3CF2CH2) | |||||||
87 | -126.6 (2F, CF3CF2) | |||||||
88 | 8b (see Tetrahedron. 1995, 51, 13073-13088) | C40 H54 F18 N2 O3 | CDCl3 | -81.6 (3F, CF3) | Tetrahedron. 1995, 51, 13073-13088 | |||
89 | -115.1 (2F, CF2CH2) | |||||||
90 | -125.0 (2F, CF2CF2CH2) | |||||||
91 | -126.6 (2F, CF3CF2) | |||||||
92 | 8c (see Tetrahedron. 1995, 51, 13073-13088) | C42 H54 F22 N2 O3 | CDCl3 | -81.4, -81.6 (3F, 3F, CF3) | Tetrahedron. 1995, 51, 13073-13088 | |||
93 | -115.0 (4F, CF2CH2) | |||||||
94 | -122.5, -123.4, -124.1, 125.0 (2F, 2F, 2F, 2F (CF2)3F2CH2) | |||||||
95 | -126.6 (4F, CF3CF2). | |||||||
96 | 7b (see Tetrahedron. 1995, 51, 13073-13088) | C25 H35 F9 N2 O2 | CDCl3 | -81.6 (3F, CF3) | Tetrahedron. 1995, 51, 13073-13088 | |||
97 | -115.1 (2F, CF2CH2) | |||||||
98 | -125.0 (2F, CF2CF2CH2) | |||||||
99 | -126.6 (2F, CF3CF2) | |||||||
100 | 7c (see Tetrahedron. 1995, 51, 13073-13088) | C27 H35 F13 N2 O2 | CDCl3 | -81.3 (3F, CF3) | Tetrahedron. 1995, 51, 13073-13088 | |||
101 | -114.9 (2F, CF2CH2) | |||||||
102 | 122.4, -123.4, -124.1 (2F, 2F, 2F, (CF2)3CF2CH2) | |||||||
103 | -126.6 (2F, CF3CF2) | |||||||
104 | 6b (see Tetrahedron. 1995, 51, 13073-13088) | C30 H43 F9 N2 O4 | CDCl3 | -81.6 (3F, CF3) | Tetrahedron. 1995, 51, 13073-13088 | |||
105 | -115.1 (2F, CF2CH2) | |||||||
106 | -125.0 (2F, CF2CF2CH2) | |||||||
107 | -126.6 (2F, CF3CF2) | |||||||
108 | 6c (see Tetrahedron. 1995, 51, 13073-13088) | C32 H43 F13 N2 O4 | CDCl3 | -81.3 (3F, CF3) | Tetrahedron. 1995, 51, 13073-13088 | |||
109 | -114.9 (2F, CF2CH2) | |||||||
110 | 122.4, -123.4, -124.1 (2F, 2F, 2F, (CF2)3CF2CH2) | |||||||
111 | -126.6 (2F, CF3CF2) | |||||||
112 | cis-1-amino-3-hydroxy-3-(trifluoromethyl)cyclobutanecarboxylic acid hydrochloride (cis-6 .HCl) | C6 H9 Cl F3 N O3 | D2O | -84.04 | s | Angew. Chem. Int. Ed.2013,52, 1486 –1489 | also considered as threonine derivative | |
113 | Isopropyl cis-3-(benzyloxy)-1-(tert-butoxycarbonyl)-3-(trifluoromethyl)cyclobutanecarboxylate (cis- 11) | C21 H28 F3 N O5 | CDCl3 | -78.43 | s | Angew. Chem. Int. Ed.2013,52, 1486 –1489 | ||
114 | cis-3-(benzyloxy)-1-(tert-butoxycarbonyl)-3-(trifluoromethyl)cyclobutanecarboxylic acid (cis-12) | C18 H22 F3 N O5 | CDCl3 | -79.34 | s | Angew. Chem. Int. Ed.2013,52, 1486 –1489 | ||
115 | cis-1-amino-3-(benzyloxy)-3-(trifluoromethyl)cyclobutanecarboxylic acid hydrochloride (cis-13) | C13 H15 Cl F3 N O3 | DMSO-d6 | -77.31 | s | Angew. Chem. Int. Ed.2013,52, 1486 –1489 | ||
116 | cis-1-([(9H-fluoren-9-yl)methoxy]carbonyl)-3-(benzyloxy)-3-(trifluoromethyl) cyclobutanecarboxylic acid (cis-14) | C28 H23 F3 N O5 | DMSO-d6 | 77.94 | s | Angew. Chem. Int. Ed.2013,52, 1486 –1489 | ||
117 | ||||||||
118 | ||||||||
119 | ||||||||
120 | ||||||||
121 | ||||||||
122 | ||||||||
123 | ||||||||
124 | Threonine derivatives | |||||||
125 | ||||||||
126 | ||||||||
127 | ||||||||
128 | ||||||||
129 | ||||||||
130 | Tryptophan derivatives | |||||||
131 | 4-Fluoro-L-tryptophan | C11 H11 F N2 O2 | CD3OH | -123.8 | Advanced Chemistry Development, Inc. | |||
132 | 5-Fluoro-L-tryptophan | C11 H11 F N2 O2 | -127.7 | Biochem. 1986, 25, 4240-4249 | ||||
133 | (3S)-2,3-Dihydro-5-fluoro-L-tryptophan | -48.74 | Biochem. 1986, 25, 4240-4249 | |||||
134 | 6-fluorotryptophan | C11 H11 F N2 O2 | CD3OH | -122 | Biochem. 2004, 43, 1432-1439 | |||
135 | 7-fluorotryptophan | C11 H11 F N2 O2 | CD3OH | -135.2 | Advanced Chemistry Development, Inc. | |||
136 | ||||||||
137 | ||||||||
138 | Tyrosine derivatives | |||||||
139 | 3-fluorotyrosine | C9 H10 F N O3 | ||||||
140 | ||||||||
141 | ||||||||
142 | ||||||||
143 | ||||||||
144 | Valine derivatives | |||||||
145 | (2S,3S)-4,4,4-Trifluorovaline | D2O/1% CF3CO2H | -71.62 | s | https://pubs.acs.org/doi/10.1021/jo900654y |
1 | The authors thank the NSF grant CHE-2153730 for supporting this effort to prepare a living and global 19F NMR database. |
---|---|
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 | |
14 | |
15 | We thank the following people for helpful contributions: |
16 | Cheng-Pan Zhang, Wuhan Institute of Technology |