1
DatePublicationSource
2
2022Marx, D., & Gryllias, K. (2022). Domain Knowledge Informed Unsupervised Fault Detection for Rolling Element Bearings. PHM Society European Conference, 7(1), 338–350. https://doi.org/10.36001/phme.2022.v7i1.3348https://doi.org/10.36001/phme.2022.v7i1.3348
3
2022Marx, D. G., Liu, C., Antoni, J., & Gryllias, K. (2022). Deep learning implementations of cyclo-stationary signal processing methods. In 2022 Leuven Conference on Noise and Vibration Engineering (pp. 661–678).https://kuleuven.limo.libis.be/discovery/fulldisplay?docid=lirias3909561&context=SearchWebhook&vid=32KUL_KUL:Lirias&search_scope=lirias_profile&tab=LIRIAS&adaptor=SearchWebhook&lang=en
4
2022Yang, J., Soltan, A. A. S., & Clifton, D. A. (2022). Machine learning generalizability across healthcare settings: insights from multi-site COVID-19 screening. NPJ digital medicine, 5(1), 69. https://doi.org/10.1038/s41746-022-00614-9 https://doi.org/10.1038/s41746-022-00614-9
5
2022Yang, J., Clifton, D., Hirst, J. E., Kavvoura, F. K., Farah, G., Mackillop, L., & Lu, H. (2022). Machine Learning-Based Risk Stratification for Gestational Diabetes Management. Sensors (Basel, Switzerland), 22(13), 4805. https://doi.org/10.3390/s22134805https://doi.org/10.3390/s22134805
6
2023Yang, J., Soltan, A. A., Eyre, D. W., Yang, Y., & Clifton, D. A. (2023). An adversarial training framework for mitigating algorithmic biases in clinical machine learning. npj Digital Medicine, 6(1), 55. https://doi.org/10.1038/s41746-023-00805-yhttps://doi.org/10.1038/s41746-023-00805-y
7
2021Shiri, H., Wodecki, J., Ziętek, B., & Zimroz, R. (2021). Inspection Robotic UGV Platform and the Procedure for an Acoustic Signal-Based Fault Detection in Belt Conveyor Idler. Energies, 14(22), 7646. https://doi.org/10.3390/en14227646https://doi.org/10.3390/en14227646
8
2023Żuławiński, W., Maraj-Zygmąt, K., Shiri, H., Agnieszka, W., Zimroz, R. (2023). Framework for stochastic modelling of long-term non-homogeneous data with non-Gaussian characteristics for machine condition prognosis. Mechanical Systems and Signal Processing. 184. 109677. 10.1016/j.ymssp.2022.109677.https://doi.org/10.1016/j.ymssp.2022.109677
9
2022Moosavi, F., Shiri, H., Wodecki, J., Wyłomańska, A., & Zimroz, R. (2022). Application of Machine Learning Tools for Long-Term Diagnostic Feature Data Segmentation. Applied Sciences, 12(13), 6766. https://doi.org/10.3390/app12136766 https://doi.org/10.3390/app12136766
10
2022Krot, P., Shiri, H., Zimroz, R. (2022). Using the natural modes of transient vibrations in predictive maintenance of industrial machines. 30th Conference Vibrations in Physical Systems VIBSYS 2022https://www.researchgate.net/publication/364570570_Using_the_natural_modes_of_transient_vibrations_in_predictive_maintenance_of_industrial_machines
11
2022Wodecki, J., Shiri, H., Siami, M., Zimroz, R.. (2022). Acoustic-based diagnostics of belt conveyor idlers in real life mining conditions by mobile inspection robot. 2022 Leuven Conference on Noise and Vibration Engineering (ISMA). 12-14 September 2022 https://doi.org/10.5281/zenodo.7864612 https://doi.org/10.5281/zenodo.7864612
12
2021Shiri, H., Wodecki, J..(2021) Analysis of the sound signal to fault detection of bearings based on Variational Mode Decomposition. IOP Conf. Ser.: Earth Environ. Sci. 942 012020https://iopscience.iop.org/article/10.1088/1755-1315/942/1/012020/meta
13
2021Zimroz, P., Shiri, H., Wodecki1, J.. (2021) Analysis of the vibro-acoustic data from test rig -comparison of acoustic and vibrational methods. IOP Conf. Ser.: Earth Environ. Sci. 942 012017https://iopscience.iop.org/article/10.1088/1755-1315/942/1/012017
14
2022Paz, B., Sorrosal, G., Mancisidor, A.. Intelligent Adaptative Robotic System for Physical Interaction Tasks. In 2022 Sixth IEEE International Conference on Robotic Computing (IRC), Italy, 2022 pp. 429-430. doi: 10.1109/IRC55401.2022.00082.https://www.computer.org/csdl/proceedings-article/irc/2022/726000a429/1KckgCdyJSU
15
2022Sal, B.T., Sorrosal, G., Mancisidor, A. Control System for Robotic Interaction Tasks. European Robotics Forum, Rotterdam, Holanda, 2022. (poster)
16
2022Kunte, D., Colangeli, C., Cornelis, B., Gryllias, K., De Veuster, C., Janssens, K. (2022). Transfer Learning for Booming Noise Classification. DAGA 2022 - 48. JAHRESTAGUNG FÜR AKUSTIK, 21 - 24 March 2022.https://www.researchgate.net/publication/365471696_Transfer_Learning_for_Booming_Noise_Classification
17
2022Kunte, D., Cornelis, B., Colangeli, C., De Veuster, C., and Gryllias, K.. Transfer learning for unsupervised booming noise classification. 2022 Leuven Conference on Noise and Vibration Engineering (ISMA), 12-14 September 2022.https://kuleuven.limo.libis.be/discovery/fulldisplay?docid=lirias4064866&context=SearchWebhook&vid=32KUL_KUL:Lirias&search_scope=lirias_profile&tab=LIRIAS&adaptor=SearchWebhook&lang=en
18
2022Deuschle, F., Cornelis, B., Lanslots, J., and Gryllias, K.. Overload detection in MEMS Microphone-based acoustic arrays. 2022 Leuven Conference on Noise and Vibration Engineering (ISMA), 12-14 September 2022.http://past.isma-isaac.be/downloads/isma2022/proceedings/Contribution_423_proceeding_3.pdf
19
2022Deuschle, F., Cornelis, B., Gryllias, K.. (2022). Robust sensor spike detection method based on Dynamic Time Warping. 4th International Conference on Advances in Signal Processing and AI, 19-21 October 2022.shorturl.at/fyT15
20
2022Siami, M., Barszcz, T., Wodecki, J., & Zimroz, R. (2022). Design of an Infrared Image Processing Pipeline for Robotic Inspection of Conveyor Systems in Opencast Mining Sites. Energies, 15(18), 6771. https://doi.org/10.3390/en15186771 https://doi.org/10.3390/en15186771
21
2022Siami, M., Barszcz, T., Wodecki, J., & Zimroz, R. (2022). Automated Identification of Overheated Belt Conveyor Idlers in Thermal Images with Complex Backgrounds Using Binary Classification with CNN. Sensors, 22(24), 10004. https://doi.org/10.3390/s222410004 https://doi.org/10.3390/s222410004
22
2022Siami, M., Barszcz, T., Zimroz, R., Wodecki, J.. (2022). Robot-based Damage Assessment Method for Identification of Overheated Idlers in Conveyor Systems Using Histogram Analysis Techniques. IOP Conf. Ser.: Earth Environ. Sci.https://www.mdpi.com/1424-8220/22/24/10004
23
2023Achilleos, A., Leclere, Q., & Antoni, J. (2023, July). Feature Extraction in non-stationary conditions. Surveillance, Vibrations, Shock and Noise. Retrieved from https://hal.science/hal-04165648https://hal.science/hal-04165648
24
2023Ahani, M., Bourdon, A., & Rémond, D. (2023, July). Effective Identification of Cyclic Excitation and Resonance in Non-stationary Gearbox Vibration Monitoring. Surveillance, Vibrations, Shock and Noise. Retrieved from https://hal.science/hal-04165641https://hal.science/hal-04165641
25
2023Karkafi, F., Raad, A., Abboud, D., Marnissi, Y., Doquet, G., & El Badaoui, M. (2023, July). Automated domain adaptation for bearings fault detection and classification. Surveillance, Vibrations, Shock and Noise. Retrieved from https://hal.science/hal-04165945https://hal.science/hal-04165945
26
2023Jabbar, A., Cocconcelli, M., d’Elia, G., Strozzi, M., & Rubini, R. (2023, July). Results on Experimental Data Analysis of Independent Cart Systems in Non-Stationary Conditions. Surveillance, Vibrations, Shock and Noise. Retrieved from https://hal.science/hal-04165905https://hal.science/hal-04165905
27
2023Cornelis, B., Deuschle, F., & Gryllias, K. (2023, July). Performance study of DTW-based spike measurement anomaly detection in sensors on real-world tests. Surveillance, Vibrations, Shock and Noise. Retrieved from https://hal.science/hal-04166051https://hal.science/hal-04166051
28
2023De Fabritiis, F., & Gryllias, K. (2023, July). A federated learning approach for rolling bearing fault diagnosis on data sources with imbalanced class distribution. In Surveillance, Vibrations, Shock and Noise.https://hal.science/hal-04165856v1/document
29
2023Kunte, D., Cornelis, B., Colangeli, C., & Gryllias, K. (2023, July). Investigating the usage of Proxy-A-Distance as a measure of dataset shift detection and quantification in an automotive booming noise classification setting. In Surveillance, Vibrations, Shock and Noise.https://hal.science/hal-04166097/document
30
2023Yang, J., Soltan, A. A., Eyre, D. W., & Clifton, D. A. (2023). Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning. Nature Machine Intelligence, 1-11.https://www.nature.com/articles/s42256-023-00697-3
31
2023Yang, J., Eyre, D.W., Lu, L., & Clifton, D. A. (2023). Interpretable machine learning-based decision support for prediction of antibiotic resistance for complicated urinary tract infections. npj Antimicrob Resist 1, 14. https://www.nature.com/articles/s44259-023-00015-2
32
2023Yang, J., Kunte, D. S., Cornelis, B., & Clifton, D. A. (2023, December). Reinforcement Learning for Imbalanced Vehicle Booming Noise Classification. In 2023 2nd International Conference on Machine Learning, Control, and Robotics (MLCR) (pp. 24-29). IEEE.https://ieeexplore.ieee.org/abstract/document/10475441
33
2023Yang, J., El-Bouri, R., O’Donoghue, O., Lachapelle, A. S., Soltan, A. A., Eyre, D. W., ... & Clifton, D. A. (2023). Deep reinforcement learning for multi-class imbalanced training: applications in healthcare. Machine Learning, 1-20.https://link.springer.com/article/10.1007/s10994-023-06481-z
34
2024Kunte, D., Marx, D., Cornelis, B., Colangeli, C., & Gryllias, K. (2024). Data-efficient fault detection in vehicle end-of-line testing through fault location-informed classification. In 2024 Leuven Conference on Noise and Vibration Engineering, Leuven, Belgium (September 9–11, 2024).https://www.researchgate.net/publication/387053707_Data-efficient_fault_detection_in_vehicle_end-of-line_testing_through_fault_location-informed_classification
35
2024Marx, D., Kunte, D., Cornelis, B., & Gryllias, K. (2024). A method for adding domain knowledge to semi-supervised fault detection using signal processing gradients. In 2024 Leuven Conference on Noise and Vibration Engineering, Leuven, Belgium (September 9–11, 2024).https://www.researchgate.net/publication/387053960_A_method_for_adding_domain_knowledge_to_semi-supervised_fault_detection_using_signal_processing_gradients
36
2024Siami, M., Barszcz, T., & Zimroz, R. (2024). Advanced Image Analytics for Mobile Robot-Based Condition Monitoring in Hazardous Environments: A Comprehensive Thermal Defect Processing Framework. Sensors, 24(11), 3421.
https://doi.org/10.3390/s24113421
37
2024Siami, M., Barszcz, T., Wodecki, J. and Zimroz, R., 2024. Semantic segmentation of thermal defects in belt conveyor idlers using thermal image augmentation and U-Net-based convolutional neural networks. Scientific Reports, 14(1), p.5748.https://doi.org/10.1038/s41598-024-55864-2
38
2024Mostafavi, A., Siami, M., Friedmann, A., Barszcz, T. and Zimroz, R., 2024, June. Probabilistic Uncertainty-Aware Decision Fusion of Neural Network for Bearing Fault Diagnosis. In Prognostics and Health Management Society (PHM European Conference) 2024 (Vol. 8, No. 1).
https://doi.org/10.36001/phme.2024.v8i1.4010
39
2024
Yang, J., Clifton, L., Dung, N. T., Phong, N. T., Yen, L. M., Thy, D. B. X., ... & Clifton, D. A. (2024). Mitigating machine learning bias between high income and low–middle income countries for enhanced model fairness and generalizability. Scientific Reports, 14(1), 13318.
https://www.nature.com/articles/s41598-024-64210-5
40
2024
Yang, J., Triendl, H., Soltan, A. A., Prakash, M., & Clifton, D. A. (2023). Addressing label noise for electronic health records: Insights from computer vision for tabular data. medRxiv.
https://link.springer.com/article/10.1186/s12911-024-02581-5
41
2024
Yang, J., Dung, N. T., Thach, P. N., Phong, N. T., Phu, V. D., Phu, K. D., ... & Clifton, D. A. (2024). Generalizability assessment of AI models across hospitals in a low-middle and high income country. Nature Communications, 15(1), 8270.
https://www.nature.com/articles/s41467-024-52618-6
42
2024
Jia, L., Cornelis, B., & Gryllias, K. Validation of time series anomaly detection methods for automated detection of measurement anomalies in noise and vibration testing.
https://www.researchgate.net/publication/387054249_Validation_of_time_series_anomaly_detection_methods_for_automated_detection_of_measurement_anomalies_in_noise_and_vibration_testing