Pythagorean theorem
The version of the browser you are using is no longer supported. Please upgrade to a supported browser.Dismiss

ABCDEFGHIJKLMNOPQRST
1
2
Prepared by: JR Brews April 20/2010
3
4
Pythagorean identity for 7D
5
Input xInput yCalculated X-productMultiplication table for octonionTest of theorem
6
xyz=x x yj
7
x11y11z1-232-2345-5476-321Σ1^20
8
x21y21z22-311346-6457-752Σ2^20
9
x32y31z3-112-2147-7465-563Σ3^22
10
x40y41z4-3-2662-3773-15514Σ4^26
11
x51y51z5214-4136-63-27725Σ5^22
12
x60y61z6117-7124-42-35536Σ6^27
13
x70y71z7125-5234-43-16617Σ7^27
14
Sum24
15
|x|^27|y|^27|z|^224|x|^2|y|^249
16
|x|^2|y|^2 - (x.y)^224
17
x.y5x.z0y.z0|x x y|^224
18
OKOKOrthogonality
19

20
Table from:http://books.google.com/books?id=_PEWt18egGgC&pg=PA235&dq=multiplication+octonion&lr=&as_drrb_is=q&as_minm_is=0&as_miny_is=&as_maxm_is=0&as_maxy_is=&as_brr=0&cd=6#v=onepage&q=multiplication%20octonion&f=falseLev Vasilʹevitch Sabinin, Larissa Sbitneva, I. P. ShestakovNon-associative algebra and its applicationsPythagorean identity is OK if cell to right is zero0Sum is direct evaluation of |x x y|^2: See reference at right, page 4.http://docs.google.com/viewer?a=v&q=cache:rDnOA-ZKljkJ:www.owlnet.rice.edu/~fjones/chap7.pdf+lagrange%27s+identity+in+the+seven+dimensional+cross+product&hl=en&gl=ph&sig=AHIEtbQQtdVGhgbYhz78SQQb2biLxRi4kA
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100