
Language/ 
Library Method

In-place or 
Return a Copy

Argument to Switch Sort 
Order to Descending Type of Sort Other Arguments Notes

Default 
Axis

Python (vanilla) my_list.sort() In-place  reverse = True timsort key For lists only. n/a
Python (vanilla) my_list = sorted(my_iterable) Copy reverse = True timsort key For any iterable. n/a

Numpy my_ndarray.sort() In-place  n/a - do outside with  [::-1]
Default is quicksort. Alternative options: kind : ‘mergesort’, 
‘heapsort’, ‘stable’. axis=-1, kind='quicksort', order=None.

Quicksort is now introsort, which becomes heapsort if 
slow. Stable is mapped to mergesort. Mergesort doesn't 
use a mergesort. It uses timsort or radix sort under the 
hood, depening upon the data type. last axis

Numpy np.sort(my_array) Copy n/a - do outside with  [::-1]
Default is quicksort Alternative options: kind : ‘mergesort’, 
‘heapsort’, ‘stable’. axis=-1, kind='quicksort', order=None.

Quicksort is now introsort, which becomes heapsort if 
slow. Stable is mapped to mergesort. Mergesort doesn't 
use a mergesort. It uses timsort or radix sort under the 
hood, depening upon the data type. last axis

Pandas df = df.sort_values(by='my_column')
Copy (unless 
inplace=True) ascending = False

Default is numpy quicksort. Alternative options: kind : 
‘mergesort’, ‘heapsort’, ‘stable’.  

by, axis=0, inplace=False, 
kind='quicksort', na_position='last.

For DataFrame and Series. Uses Numpy for sorting under 
the hood. last axis

TensorFlow tf.sort(my_values) Copy direction = 'DESCENDING'

Finds the largest value in the tensor using top_k(). Uses CUB 
Cuda library, which wraps thrust, for parallel sort with GPU for 
large cases; algorithms vary - e.g. merge sort, radix sort. last axis

PyTorch torch.sort(my_values) Copy descending = True
Uses thrust CUDA library for parallel sort with GPU for large 
cases; algorithms vary - e.g. merge sort, radix sort. last axis

SQL ORDER BY my_column Copy DESC
Varies. Postgres uses a disk merge sort, quick sort, or heap 
sort depending upon the situation. n/a

 



Sorting Algorithms mostly from 
http://interactivepython.org/runestone/static/pythonds/SortSearch/TheSelectionSort.html https://johnderinger.
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(BigO)

Name When? How? Worst Average Best
Memory 
Required Stable InPlace Recursive Type Notes

1 Bubble Never Swap adjacent pairs. Bubble up. n^2 n^2 n Comparison Don't use

2 Insertion Almost never n^2 n^2 n^2 N Y Comparison

Insertion Sort - this one is actually pretty good on nearly sorted collections. If you have reliable 
apriori statistics that cofirm this to be the case, or if you are sorting a very small collection, 
insertion sort is the way to go. It's also commonly used to implement the base case for quicksort 
because it has very low overhead, it's stable and doesn't require aditional memory.

Insertion sort: this sort 
is useful if the data are 
already almost sorted, 
or if the list is very 
short (roughly, 50 
items or less).

3 Selection Almost never n^2 N Y Comparison

Selection Sort - also a quadratic algorithm, performs poorly on any but the smallest collections. 
But unlike Insertion Sort which does fairly well on almost sorted collections, Selection Sort 
performs the same. It's only advantage is that it performs fewer swaps than Insertion Sort so if 
writes are expensive, it might be preferable.

4 Heap

When 
concerned 
about worst 
case

nlogn version of selection sort
leverages a heap data structure to improve time complexity.
organize the data set into a heap data structure
determine the largest (or smallest) element of the dataset
place at the end (or beginning) of the set
continue with the rest of the dataset 
root node is guaranteed to be the largest (or smallest) element. 
When root is removed and placed at the end of the datset,
heap is rearranged so the largest element remaining moves to the root n(log n) n(log n) n(log n) N Y N Binary Many consider best sorting algorithm for guaranteed O(n log n) time complexity.

5 Merge
When need 
stable

zip. comparison-based, stable, divide and conquer algorithm that requires additional memory, in fact each pass 
through the data doubles the size of the sorted subsections. The algorithm starts by comparing every two elements 
(i.e., 1 with 2, then 3 with 4…) and swapping them if the first should come after the second. It then merges each of 
the resulting datasets of two into sets of four, then merges those sets of four, and so on; until at last two sets are 
merged into the final sorted dataset. n(log n) n(log n) n(log n) Y average slower than quicksort b/c copy collection

Merge Sort is the only 
guaranteed O(n log n) 
even in the worst 
case. The cost is that 
merge sort uses more 
memory.

6 Quick For speed

merge with a pivot. 
all values smaller than the pivot are moved before it and all greater are moved after it. 
This is done in linear time O(n) and in-place. 
The lesser and greater subsets are then recursively sorted, with each recursion selecting a new pivot. n^2 n(log n) n(log n)

Can 
be, but 
slower Y Y Mergesort with a pivot

7 Tim Python default

A stable, adaptive, hybrid sorting algorithm, derived from Merge sort and Insertion sort. The algorithm finds subsets 
of the data that are already ordered, and uses the subsets to sort the data more efficiently. This is done by merging 
an identified subset, called a run, with existing runs until certain criteria are fulfilled. Timsort was designed to take 
advantage of partial orderings that already exist in most real-world data. n(log n) n(log n) n Y hybrid

8 Shell A shell sort improves on the insertion sort by sorting incremental sublists. It falls between O(n) and O(n2)
9 Intro combo

A merge sort is O(nlog n), but requires additional space for the merging process.

A quick sort is O(nlog n), but may degrade to O(n2) if the split points are not near the middle of the list. It 
does not require additional space.

Bubble Sort  

Bubble sort - compare one to another down the list and swap each one as needed. takes lots of passes. 
Short bubble is a modification to bubble so that it can stop early if everything is in place - don't think any 
other sort algos can do that. So even though n2, can be good with short lists with most items in order.

Selection sort walks the list to find the highest number and swaps the it with the largest position - or next 
largest. Repeat.

You may see that the selection sort makes the same number of comparisons as the bubble sort and is 
therefore also O(n2)O(n2). However, due to the reduction in the number of exchanges, the selection sort 
typically executes faster in benchmark studies. In fact, for our list, the bubble sort makes 20 exchanges, 
while the selection sort makes only 8.

http://interactivepython.org/runestone/static/pythonds/SortSearch/TheSelectionSort.html

Insertion sort:
sort as you go through the list - make mini sorted lists. when the next item needs put into the sorted list you shift all 
the larger items to the right
n2

One note about shifting versus exchanging is also important. In general, a shift operation requires 
approximately a third of the processing work of an exchange since only one assignment is performed. In 
benchmark studies, insertion sort will show very good performance.

Shell Sort
gaps and then an insertion sort on last pass

Although this list is not completely sorted, something very interesting has happened. By sorting the 
sublists, we have moved the items closer to where they actually belong.
Although a general analysis of the shell sort is well beyond the scope of this text, we can say that it tends to fall somewhere between O(n)O(n) and O(n2)O(n2), based on the behavior described above. For the 
increments shown in Listing 5, the performance is O(n2)O(n2). By changing the increment, for example using 2k−12k−1 (1, 3, 7, 15, 31, and so on), a shell sort can perform at O(n32)O(n32).

http://interactivepython.org/runestone/static/pythonds/SortSearch/TheShellSort.html

merge sort

Merge sort is a recursive algorithm that continually splits a list in half.

to analyze the mergeSort function, we need to consider the two distinct processes that make up its 
implementation. First, the list is split into halves. We already computed (in a binary search) that 
we can divide a list in half lognlog n times where n is the length of the list. The second process is 
the merge. Each item in the list will eventually be processed and placed on the sorted list. So the 
merge operation which results in a list of size n requires n operations. The result of this analysis is 
that lognlog n splits, each of which costs nn for a total of nlognnlog n operations. A merge sort is 
an O(nlogn)O(nlog n) algorithm.
Recall that the slicing operator is O(k)O(k) where k is the size of the slice. In order to guarantee 
that mergeSort will be O(nlogn)O(nlog n) we will need to remove the slice operator. Again, this is 
possible if we simply pass the starting and ending indices along with the list when we make the 
recursive call. We leave this as an exercise.
It is important to notice that the mergeSort function requires extra space to hold the two halves as they are extracted with the slicing operations. 
This additional space can be a critical factor if the list is large and can make this sort problematic when working on large data sets.

Quicksort  

Like merge sort, quicksort uses divide-and-conquer, and so it's a recursive 
algorithm. The way that quicksort uses divide-and-conquer is a little different 
from how merge sort does. In merge sort, the divide step does hardly 
anything, and all the real work happens in the combine step. Quicksort is the 
opposite: all the real work happens in the divide step. In fact, the combine 
step in quicksort does absolutely nothing.
Quicksort has a couple of other differences from merge sort. Quicksort works in place. And its worst-case running 
time is as bad as selection sort's and insertion sort's: \Theta(n^2)Θ(n2). But its average-case running time is as good 
as merge sort's: \Theta(n \log_2 n)Θ(nlog2 n). So why think about quicksort when merge sort is at least as good? 
That's because the constant factor hidden in the big-Θ notation for quicksort is quite good. In practice, quicksort 
outperforms merge sort, and it significantly outperforms selection sort and insertion sort.
Divide by choosing any element in the subarray array[p..r]. Call this element the pivot. Rearrange the 
elements in array[p..r] so that all elements in array[p..r] that are less than or equal to the pivot are to its left 
and all elements that are greater than the pivot are to its right. We call this procedure partitioning. At this 
point, it doesn't matter what order the elements to the left of the pivot are in relation to each other, and the 
same holds for the elements to the right of the pivot. We just care that each element is somewhere on the 
correct side of the pivot.

As a matter of practice, we'll always choose the rightmost 
element in the subarray, array[r], as the pivot. So, for 
example, if the subarray consists of [9, 7, 5, 11, 12, 2, 14, 
3, 10, 6], then we choose 6 as the pivot. After partitioning, 
the subarray might look like [5, 2, 3, 6, 12, 7, 14, 9, 10, 
11]. Let q be the index of where the pivot ends up.

Conquer by recursively sorting the subarrays array[p..q-1] 
(all elements to the left of the pivot, which must be less 
than or equal to the pivot) and array[q+1..r] (all elements 
to the right of the pivot, which must be greater than the 
pivot).

khan academy:

http://interactivepython.org/runestone/static/pythonds/SortSearch/TheSelectionSort.html
http://interactivepython.org/runestone/static/pythonds/SortSearch/TheShellSort.html#lst-shell
http://interactivepython.org/runestone/static/pythonds/SortSearch/TheShellSort.html#lst-shell
http://interactivepython.org/runestone/static/pythonds/SortSearch/TheShellSort.html


2048 max sort 
in place rows columns

4,096 110,000,000,000 1,100,000 100,000
2,048 50,000,000,000 500000 100000


