
Solidity DAY 1
Wednesday, 29th of April

Summit 2020
+ April 29-30
+ Join at interspace.solidity summit.ethereum.org

TIME TITLE SPEAKER / MODERATOR FORMAT COLLABORATIVE NOTES OTHER TIME ZONES

CEST GMT/UCT PDT EDT TW / CST JST
13 00 11 00 Opening & Welcome Franziska Heintel 4 00 7 00 19 00 20 00
13 10 11 10 Solidity 2020 Roadmap Chris Reitwiessner Lightning Talk 4 10 7 10 19 10 20 10

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy
13 30 11 30 Introduction to the K Framework and KSolidity Rikard Hjort and Shang-Wei Lin Lightning Talk 4 30 7 30 19 30 20 30

Learn about the K's background, and the Solidity semantics in the K framework.

13 50 11 50 Solc verify, a source level formal verif cation tool for Solidity smart contracts Ákos Hajdu Talk 4 50 7 50 19 50 20 50

Solc verify is a source level formal verif cation tool for Soldity smart contracts, developed in 
collaboration with SRI International. Solc verify takes smart contracts written in Solidity and 
discharges verif cation conditions using modular program analysis and SMT solvers. Built on top 
of the Solidity compiler, solc verify reasons at the level of the contract source code. This 
enables solc verify to effectively reason about high level functional properties while modeling 
low level language semantics (e.g., the memory model) precisely. The contract properties, such 
as contract invariants, loop invariants, function pre  and post conditions and f ne grained 
access control can be provided as in code annotations by the developer. This enables automated, 
yet user friendly formal verif cation for smart contracts.

14 20 12 20 Certora: Keeping your code secure forever: Move Fast and Break Nothing Shmuel Sagiv Talk 5 20 8 20 20 20 21 20

We will describe a platform for formally verifying smart contract correctness that can be 
integrated in CI/CD. Smart contracts and their invariants are converted into SMT formulas and 
the SMT solvers automatically identify vulnerabilities or generate mathematical proofs of 
correctness. We describe our experience applying this technology in the development phase and 
present bugs found and smart contracts verif ed.  Our hope is that this SaaS technology can 
speed up the development process. The secret sauce for integrating in the CI/CD is that the 
invariants are reusable across different versions of the code, and targeting the low level EVM 
bytecode. This raises various technical challenges both at the conceptual level of the 
specif cation and at the technical level.

14 50 12 50 dType: distributed typing & Lens: functional programming lensing in Ethereum 1.x and 2.0 Loredana Cirstea Talk 5 50 8 50 20 50 21 50
dType is a decentralized & distributed type system for interoperable protocols.
ChainLens: Lens implementation for Ethereum as a browser and f ne grained search for smart 
contracts with a distributed database cache of types, functions, ABIs, code sources, and other 
metadata information. Available as a Remix IDE plugin, interoperable with other plugins.

15 20 13 20 Thoughts on Language Design and Fragmentation Alex Beregszaszi Lightning Talk 6 20 9 20 21 20 22 20
Solidity is a relatively young language in a rapidly evolving space. The challenges it faces 
changed over time, greatly influencing the language design. In this brief talk we examine the 
current language design processes in place and compare it against other models (i.e. language 
design committees).

15 40 13 40 SafeMath by default Chris Reitwiessner Open Discussion https://hackmd.io/@dr56UxqwTjO-0LGQ1GS5Lw/B1QkhYTOI6 40 9 40 21 40 22 40
The SafeMath library is commonplace among smart contracts and it makes sense to flag a runtime 
failure in case of arithmetic overflow as we already do for division by zero.
Since the checks have been implemented already for the Yul code generator, we can re use them in 
the legacy code generator.
The idea is to provide a syntactic "unchecked {  }" area where overflow checks are not 
performed.

Since overflow failures can lead to a denial of service, developers still have to be aware of 
the exact situations in which overflows could occur.
The main open questions in this area are:
 - should the error cause a revert or an invalid opcode?
 - should there be a way to disable the checks on a whole source f le?
 - should we provide f ne grained access about which checks to disable (overflow, underflow, 
division by zero, array out of bounds, )?

16 10 14 10 SHORT BREAK (hang out in the lobby if you like) 7 10 10 10 22 10 23 10
16 25 14 25 Libraries 2.0 Chris Reitwiessner Open Discussion https://hackmd.io/@franzihei/BJn0z5pdU7 25 10 25 22 25 23 25

Libraries are the main way in Solidity to make use of the delegatecall opcode, but they are not 
very popular among developers.
Are deployed libraries re used across multiple projects? Would it help to make the address 
changeable at runtime? How would that work? Is there any other problem with libraries?
Should libraries allow inheritance or state variables? Is there a better way to associate e.g. a 
data structure with library code similar to rust's ""impl"" keyword?
How can libraries make it possible to split a contract's code across multiple addresses to 
overcome the code size barrier?

17 10 15 10 Introduction to Yul Nick Dodson Talk 8 10 11 10 23 10 0 10

Yul  is an extension to Yul, an intermediate language for the Ethereum Virtual Machine. It adds 
several quality of language features such as enums, constants, memory structures and injected 
methods. Our talk will go over the motivations, objectives and the features that Yul  brings to 
the Ethereum ecosystem.

1) Yul overview, what we liked and what we needed
2) Motivations for an extension language
3) Objectives for a new language
4) Yul  feature overview
5) Roadmap and future language exploration

17 40 15 40 New features for Yul Alex Beregszaszi Open Discussion https://hackmd.io/@franzihei/SyIeE5TO88 40 11 40 23 40 0 40

Yul is a language that has developed out of the loose inline assembly introduced in Solidity 
0.3.1. Since then it has come a long way and proven its usefulness. Earlier this year, we 
completed the type checking and are actively using that feature in the compilation pipeline to 
webassembly. Fuel Labs recently published an extension of Yul called Yul  that adds several 
features.

This session is about discussing potential new features for Yul (and thus Solidity inline 
assembly)
 - user def ned types - how would conversions work?
 - stricter built in type system for the EVM dialect: memory / storage and calldata pointers, 
address?

18 10 16 10 SOLL Compiler (for YUL and Solidity) Michael Yuan Lightning Talk 9 10 12 10 0 10 1 10
Learn more about the evolution and current state of the SOLL compiler project, which builds 
compiler front ends for YUL and Solidity, and backends for Ewasm and EVM. This talk includes a 
report on the technical progress made so far as well as future roadmaps and collaborations. It 
also discussed the web based IDE developed for Solidity that allows fast dapp development and 
deployment on Ethereum compatible blockchains.

18 30 16 30 Upgradable contracts Chris Reitwiessner Open Discussion https://hackmd.io/@franzihei/ByBTVcpuL9 30 12 30 0 30 1 30
Upgradability is a common topic for smart contracts. Yet there is no real support by the 
Solidity language or compiler. This open discussion group will be mostly concerned with 
gathering feedback about the various techniques currently used for upgradable and proxy 
contracts and how this could be streamlined by the Solidity language or supported by the 
Solidity compiler.

19 30 17 30 SHORT BREAK (hang out in the lobby if you like) 10 30 13 30 1 30 2 30
19 50 17 50 Fixed point types Chris Reitwiessner Open Discussion https://hackmd.io/@franzihei/ry7kn5auI 10 50 13 50 1 50 2 50

Fixed point types should allow a safe and straightforward way to work with non integer values. 
They have been proposed and partly implemented for Solidity for a long time. The latest push in 
that direction was halted due to concerns from the community. We would like to take the Solidity 
Summit as an opportunity to get more feedback from the broader community: Would you use f xed 
point types? Which value range do you need? Should we use decimal or binary f xed point types?

20 20 18 20 Tracking mapping keys with the Truffle Debugger Harry Altman Talk 11 20 14 20 2 20 3 20
The Solidity language does not keep track of what keys are set in a given mapping. However, the 
Truffle Debugger can, when debugging a transaction, keep track of what keys have been accessed 
during that transaction, and it can do this even if the mappings are nested inside arrays, 
structs, or other mappings. In this talk, we will dissect Truffle Debugger's mapping key 
tracking system and learn how it works.

20 50 18 50 Truffle Debugger Demo and Debugging Data Discussion Nick D'Andrea and Chris Reitwiessner Open Discussion https://hackmd.io/@franzihei/rkJ_o9adU11 50 14 50 2 50 3 50
In the early days, the Mix debugger shared the same code base as the Solidity compiler and thus 
it was easy for it to retrieve required information about internals of a smart contract. Since 
then, the type system and the optimizer have become way more complex and it is not as easy 
anymore to decypher what is going on behind the scenes. Some months ago, the Truffle team has 
kicked off an initiative for the compiler to provide more detailed debugging information, but 
debugging information is not only relevant for debuggers, but also for general analysis tools. 
This discussion will be about collecting needs about debugging information and starting to 
standardize the data format.

21 35 19 35 End of Day 1 - Good night Europe! 13 00 16 00 4 00 5 00

Let's stay in touch!

Tweet: @solidity_lang
Read: solidity.ethereum.org
Chat: gitter.im/ethereum/solidity

https://www.google.com/url?q=https://hackmd.io/@dr56UxqwTjO-0LGQ1GS5Lw/B1QkhYTOI&sa=D&usd=2&usg=AOvVaw3gS1ivjMuh-H8EVfpLVvJR
https://hackmd.io/@franzihei/BJn0z5pdU
https://www.google.com/url?q=https://hackmd.io/@franzihei/SyIeE5TO8&sa=D&usd=2&usg=AOvVaw1wtJbVPgxAyncHf71X00Q0
https://www.google.com/url?q=https://hackmd.io/@franzihei/ByBTVcpuL&sa=D&usd=2&usg=AOvVaw3UclhQ7jYPvAUiOzzIqYFO
https://hackmd.io/@franzihei/ry7kn5auI
https://www.google.com/url?q=https://hackmd.io/@franzihei/rkJ_o9adU&sa=D&usd=2&usg=AOvVaw3p6AxuL2MEtg8zMlAJqLCm


Solidity DAY 1
Wednesday, 29th of April

Summit 2020
+ April 29-30
+ Join at interspace.solidity summit.ethereum.org

TIME TITLE SPEAKER / MODERATOR FORMAT COLLABORATIVE NOTES OTHER TIME ZONES

CEST GMT/UCT PDT EDT TW / CST JST
13 30 11 30 Welcome to Day 2 Franziska Heintel 4 30 7 30 19 30 20 30
13 35 11 35 Creativity and Solidity Development Ann Kilzer Lightning Talk 4 35 7 35 19 35 20 35

Can the challenges of Solidity development — gas limitations, storage scarcity, and 
decentralized computation — create conditions for creative DApp development? Are the parts of 
Solidity that often confound developers actually starting points for creative thinking? This 
lightning talk will showcase a few novel applications of Solidity, from DApp layering and ERC721 
art generation, to some of my personal projects, including a fruit backed cryptocurrency, a 
blockchain treasure hunt, and an ERC721 Curry Generator. This talk will also provide insight 
into how Curvegrid builds DApps.

13 55 11 30 Optimize Solidity/Yul/Ewasm bytecode via LLVM framework Hung-Ying Tai Talk 4 30 7 30 19 30 20 30
SOLL 0.0.6 release(eta. 2020-03-06) will support Yul constructor and deployer. SOLL can compile 
both Solidity(partial of the grammar) and Yul(most of the major grammar) to LLVM IR. When the 
LLVM IR is generated, SOLL will apply LLVM optimization passes to reduce the code size, improve 
the performance, and eliminate redundant codes. And then SOLL transform these optimized LLVM IR 
into Ewasm bytecodes.

In this topic, I want to share about how we optimize via LLVM framework and a new prof le guided 
optimization mechanism to analyze wasm runtime execution and adjust the optimization strategies 
back to optimization phase to gain more improvement.

14 25 12 25 Introduction to remix analyzer Aniket Lightning Talk 5 25 8 25 20 25 21 25
The remix analyzer is a Solidity static analysis tool.

14 45 12 45 Overview of the Solang Solidity Compiler Sean Young Lightning Talk 5 45 8 45 20 45 21 45
In this talk you'll learn more about the Solang Compiler:
- Why Solang (rust, llvm)
- What targets are supported (substrate, ewasm)
- What is implemented
- Roadmap
- Compiler stages:
   - parser (lalrpop)
   - resolver
   - code emitter
   - standard library
   - linker
- future ideas/directions

15 05 13 05 Detecting DoS vulnerabilities caused by gas limits with fuzzing Sebastian Banescu Talk 6 05 9 05 21 05 22 05
During our audits at Quantstamp, we often f nd functions written in Solidity which are prone to 
hit out of gas errors because they contain loops over a user def ned/influenced value. However, 
these functions do not run out of gas all the time. It takes a certain input value or a certain 
contract state to run out of gas. The big question is: how can we identify that state/value? 
This presentation describes an approach to answer this question by using a smart contract 
fuzzing approach based on machine learning.

15 35 13 35 Visualization of large code bases with the Solidity visualizer extension for VSCode Gonçalo Sá and Martin Ortner Lightning Talk 6 35 9 35 21 35 22 35
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt 
ut labore et dolore magna aliquyam erat, sed diam voluptua.

15 55 13 55 SHORT BREAK (hang out in the lobby if you like) 6 55 9 55 21 55 22 55
16 10 14 10 Gas unrestricted alternative for .send() and .transfer() Alex Beregszaszi Open Discussion https://hackmd.io/@franzihei/SJ-fp3pOL7 10 10 10 22 10 23 10

.send and .transfer are promoted as the safe way  to transfer ether. This promise has been 
challenged over the years and recent changes introduced in the Istanbul hard fork have prompted 
questions again. It is time to review and potentially change how .send and .transfer behave.

16 30 14 30 Introduction to LSP & possible applications to Solidity Christian Parpart Open Discussion https://hackmd.io/@franzihei/B1_FT3TOL7 30 10 30 22 30 23 30
The language server protocol is an initiative by Microsoft to standardize a communication 
protocol between IDEs and compilers. It does not only allow line based error reporting, but also 
code completion, "jump to def nition" and other features. While code completion might be rather 
far off since it has to cope with analysis on invalid source code, "jump to def nition" and 
other features might be very useful for auditors and developers alike.

17 00 15 00 In language testing syntax (with lightning talk from remix tests) Alex Beregszaszi and Aniket Open Discussion https://hackmd.io/@franzihei/Hyhpp2Tu88 00 11 00 23 00 0 00
Many languages have built in support for unit testing. Many popular frameworks provide their own 
unit testing solutions for Solidity  unfortunately compatibility between these frameworks is 
not yet solved, locking tests in with one of them. Lets discuss together what language support 
for unit testing could look like!

17 30 15 30 Mutation Testing with Vertigo Joran Honig 8 30 11 30 23 30 0 30
An introduction to mutation testing and the tool Vertigo, including a discussion where solc, 
Truffle and Vertigo could work together.

18 00 16 00 ACTing formal Martin Lundfall and Leo Alt Open Discussion https://hackmd.io/@franzihei/SJbZ02TO89 00 12 00 0 00 1 00
Introduction to ACT, followed by an open discussion around formal verif cation and language 
features to support more formal specif cations inside Solidity.

19 00 17 00 Immutable and explicit copies Alex Beregszaszi and Leo Alt Open Discussion https://hackmd.io/@franzihei/r1WSC36dI10 00 13 00 1 00 2 00
Since potentially unbounded loops in smart contracts lead to a denial of service, it is probably 
a good idea to make implicit copies of reference types more visible. This would also have the 
benef t that it would be clearer whether or not two variables reference the same data area. In 
order to achieve that, we would like to propose a new keyword tentatively called ""copyof"" that 
allows taking a copy of a value of reference type.

Since they are closely related, it makes sense to also discuss another change to the reference 
semantics borrowed from rust:
Marking all variables as ""constant"" or ""immutable"" by default and also enforcing this when 
passing them on without copying.

Open questions:
 - immutable by default only for reference types or also value types?
 - syntax
 - immutability for contracts only allows view functions to be called? Does it apply to the 
address or the contract itself?
 - copyof does not actually perform the copy, only the assignment or function call does - is 
there a better syntax for that?

19 45 17 45 SHORT BREAK (hang out in the lobby if you like) 10 45 13 45 1 45 2 45
20 05 18 05 Modif er areas Chris Reitwiessner Open Discussion https://hackmd.io/@franzihei/BkydAh6OL11 05 14 05 2 05 3 05

Modif er areas are a proposal to apply one or more modif ers to a syntactical range of 
functions. The idea was to make it easily visible that a collection of functions can e.g. only 
be called by the owner or is protected by a mutex. We are not yet enitrely happy with the syntax 
for various reasons and would like to get feedback and collect and discuss further ideas.

20 35 18 35 Verify all the sources Ligi Lightning Talk 11 35 14 35 2 35 3 35
In this talk you will learn about source verif cation. These topics will be covered:
 - Why is it needed?
 - How is it done?
 - How can it be decentralized?
 - How can you use it?
 - What is wrong with NatSpec and RadSpec?
 - What are the next steps?

20 55 18 55 ETHPM = metadata Nick Gheorghita Open Discussion https://hackmd.io/@franzihei/Hk160n6_U11 55 14 55 2 55 3 55
The Solidity compiler appends the hash of a json structure called the metadata to the deployed 
bytecode of each contract by default. The idea behind this feature is to hash link the original 
source code into the bytecode, provide the ABI and other information and f nally all settings 
that are required to re compile the contract. Most of these features overlap with the EthPM 
project with the only difference that the compiler needs to generate this information before the 
contract has been deployed. Because of that, the EthPM team started an initiative to unify the 
two data formats. Until now, we already get pretty far and this session is mostly to agree on 
some f nal details of the combined metadata and EthPM3 specif cation.

21 25 19 25 Functional Solidity Chris Reitwiessner Open Discussion https://hackmd.io/@franzihei/rkhlyapdI12 25 15 25 3 25 4 25
Function types have been part of Solidity for a long time now, but we do not see them widely 
used. What are the reasons for that and which changes to the language would be desired in this 
area? Would lambda functions with or without capturing be useful to developers? What about 
""pure"" functions outside the scope of a contract? Currying?

21 55 19 55 Community voted placeholder discussion or open Q&A with the Solidity team Open Discussion 12 55 15 55 3 55 4 55
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt 
ut labore et dolore magna aliquyam erat, sed diam voluptua. 

22 30 20 30 Wrap up Solidity Summit 2020 13 30 16 30 4 30 5 30

Let's stay in touch!

Tweet: @solidity_lang
Read: solidity.ethereum.org
Chat: gitter.im/ethereum/solidity

https://www.google.com/url?q=https://hackmd.io/@franzihei/SJ-fp3pOL&sa=D&usd=2&usg=AOvVaw2XnJwNcMgEdhj86K2lBfc6
https://www.google.com/url?q=https://hackmd.io/@franzihei/B1_FT3TOL&sa=D&usd=2&usg=AOvVaw2CDDsNfqJJof8-oyULS1VJ
https://www.google.com/url?q=https://hackmd.io/@franzihei/Hyhpp2Tu8&sa=D&usd=2&usg=AOvVaw3PyiIKhsdJMrQkhQsVn-5j
https://www.google.com/url?q=https://hackmd.io/@franzihei/SJbZ02TO8&sa=D&usd=2&usg=AOvVaw1sbdbTuLllWW6Xw8oFss9G
https://www.google.com/url?q=https://hackmd.io/@franzihei/r1WSC36dI&sa=D&usd=2&usg=AOvVaw2NcUSHn_gRraFFJGdmqMYc
https://www.google.com/url?q=https://hackmd.io/@franzihei/BkydAh6OL&sa=D&usd=2&usg=AOvVaw1qbf5LIZ9yxZGP7htmVOxz
https://www.google.com/url?q=https://hackmd.io/@franzihei/Hk160n6_U&sa=D&usd=2&usg=AOvVaw00hZZMODAouYcihf9z5QX0
https://www.google.com/url?q=https://hackmd.io/@franzihei/rkhlyapdI&sa=D&usd=2&usg=AOvVaw0vgcD1KBMzrmM0QKI7qMU3

