
Solidity DAY 1
Wednesday, 29th of April

Summit 2020
+ April 29-30
+ Join at interspace.solidityЋsummit.ethereum.org

TIME TITLE SPEAKER / MODERATOR FORMAT COLLABORATIVE NOTES OTHER TIME ZONES

CEST GMT/UCT PDT EDT TW / CST JST
13ϭ00 11ϭ00 Opening & Welcome Franziska Heintel 4ϭ00 7ϭ00 19ϭ00 20ϭ00
13ϭ10 11ϭ10 Solidity 2020 Roadmap Chris Reitwiessner Lightning Talk 4ϭ10 7ϭ10 19ϭ10 20ϭ10

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy
13ϭ30 11ϭ30 Introduction to the K Framework and KSolidity Rikard Hjort and Shang-Wei Lin Lightning Talk 4ϭ30 7ϭ30 19ϭ30 20ϭ30

Learn about the K's background, and the Solidity semantics in the K framework.

13ϭ50 11ϭ50 SolcЋverify, a sourceЋlevel formal verifĐcation tool for Solidity smart contracts Ákos Hajdu Talk 4ϭ50 7ϭ50 19ϭ50 20ϭ50

SolcЋverify is a sourceЋlevel formal verifĐcation tool for Soldity smart contracts, developed in
collaboration with SRI International. SolcЋverify takes smart contracts written in Solidity and
discharges verifĐcation conditions using modular program analysis and SMT solvers. Built on top
of the Solidity compiler, solcЋverify reasons at the level of the contract source code. This
enables solcЋverify to effectively reason about highЋlevel functional properties while modeling
lowЋlevel language semantics (e.g., the memory model) precisely. The contract properties, such
as contract invariants, loop invariants, function preЋ and postЋconditions and fĐne grained
access control can be provided as inЋcode annotations by the developer. This enables automated,
yet userЋfriendly formal verifĐcation for smart contracts.

14ϭ20 12ϭ20 Certora: Keeping your code secure forever: Move Fast and Break Nothing Shmuel Sagiv Talk 5ϭ20 8ϭ20 20ϭ20 21ϭ20

We will describe a platform for formally verifying smart contract correctness that can be
integrated in CI/CD. Smart contracts and their invariants are converted into SMT formulas and
the SMT solvers automatically identify vulnerabilities or generate mathematical proofs of
correctness. We describe our experience applying this technology in the development phase and
present bugs found and smart contracts verifĐed. Our hope is that this SaaS technology can
speed up the development process. The secret sauce for integrating in the CI/CD is that the
invariants are reusable across different versions of the code, and targeting the low level EVM
bytecode. This raises various technical challenges both at the conceptual level of the
specifĐcation and at the technical level.

14ϭ50 12ϭ50 dType: distributed typing & Lens: functional programming lensing in Ethereum 1.x and 2.0 Loredana Cirstea Talk 5ϭ50 8ϭ50 20ϭ50 21ϭ50
dType is a decentralized & distributed type system for interoperable protocols.
ChainLens: Lens implementation for Ethereum as a browser and fĐneЋgrained search for smart
contracts with a distributed database cache of types, functions, ABIs, code sources, and other
metadata information. Available as a Remix IDE plugin, interoperable with other plugins.

15ϭ20 13ϭ20 Thoughts on Language Design and Fragmentation Alex Beregszaszi Lightning Talk 6ϭ20 9ϭ20 21ϭ20 22ϭ20
Solidity is a relatively young language in a rapidly evolving space. The challenges it faces
changed over time, greatly influencing the language design. In this brief talk we examine the
current language design processes in place and compare it against other models (i.e. language
design committees).

15ϭ40 13ϭ40 SafeMath by default Chris Reitwiessner Open Discussion https://hackmd.io/@dr56UxqwTjO-0LGQ1GS5Lw/B1QkhYTOI6ϭ40 9ϭ40 21ϭ40 22ϭ40
The SafeMath library is commonplace among smart contracts and it makes sense to flag a runtime
failure in case of arithmetic overflow as we already do for division by zero.
Since the checks have been implemented already for the Yul code generator, we can reЋuse them in
the legacy code generator.
The idea is to provide a syntactic "unchecked { ϤϤФ }"Ћarea where overflow checks are not
performed.

Since overflow failures can lead to a denialЋofЋservice, developers still have to be aware of
the exact situations in which overflows could occur.
The main open questions in this area are:
 - should the error cause a revert or an invalid opcode?
 - should there be a way to disable the checks on a whole source fĐle?
 - should we provide fĐneЋgrained access about which checks to disable (overflow, underflow,
division by zero, array out of bounds, ϤϤФ)?

16ϭ10 14ϭ10 SHORT BREAK (hang out in the lobby if you like) 7ϭ10 10ϭ10 22ϭ10 23ϭ10
16ϭ25 14ϭ25 Libraries 2.0 Chris Reitwiessner Open Discussion https://hackmd.io/@franzihei/BJn0z5pdU7ϭ25 10ϭ25 22ϭ25 23ϭ25

Libraries are the main way in Solidity to make use of the delegatecall opcode, but they are not
very popular among developers.
Are deployed libraries reЋused across multiple projects? Would it help to make the address
changeable at runtime? How would that work? Is there any other problem with libraries?
Should libraries allow inheritance or state variables? Is there a better way to associate e.g. a
data structure with library code similar to rust's ""impl"" keyword?
How can libraries make it possible to split a contract's code across multiple addresses to
overcome the code size barrier?

17ϭ10 15ϭ10 Introduction to YulӘ Nick Dodson Talk 8ϭ10 11ϭ10 23ϭ10 0ϭ10

YulӘ is an extension to Yul, an intermediate language for the Ethereum Virtual Machine. It adds
several quality of language features such as enums, constants, memory structures and injected
methods. Our talk will go over the motivations, objectives and the features that YulӘ brings to
the Ethereum ecosystem.

1) Yul overview, what we liked and what we needed
2) Motivations for an extension language
3) Objectives for a new language
4) YulӘ feature overview
5) Roadmap and future language exploration

17ϭ40 15ϭ40 New features for Yul Alex Beregszaszi Open Discussion https://hackmd.io/@franzihei/SyIeE5TO88ϭ40 11ϭ40 23ϭ40 0ϭ40

Yul is a language that has developed out of the loose inline assembly introduced in Solidity
0.3.1. Since then it has come a long way and proven its usefulness. Earlier this year, we
completed the type checking and are actively using that feature in the compilation pipeline to
webassembly. Fuel Labs recently published an extension of Yul called YulӘ that adds several
features.

This session is about discussing potential new features for Yul (and thus Solidity inline
assembly)ϭ
 - userЋdefĐned types - how would conversions work?
 - stricter builtЋin type system for the EVM dialect: memory / storage and calldata pointers,
address?

18ϭ10 16ϭ10 SOLL Compiler (for YUL and Solidity) Michael Yuan Lightning Talk 9ϭ10 12ϭ10 0ϭ10 1ϭ10
Learn more about the evolution and current state of the SOLL compiler project, which builds
compiler front ends for YUL and Solidity, and backends for Ewasm and EVM. This talk includes a
report on the technical progress made so far as well as future roadmaps and collaborations. It
also discussed the webЋbased IDE developed for Solidity that allows fast dapp development and
deployment on Ethereum compatible blockchains.

18ϭ30 16ϭ30 Upgradable contracts Chris Reitwiessner Open Discussion https://hackmd.io/@franzihei/ByBTVcpuL9ϭ30 12ϭ30 0ϭ30 1ϭ30
Upgradability is a common topic for smart contracts. Yet there is no real support by the
Solidity language or compiler. This open discussion group will be mostly concerned with
gathering feedback about the various techniques currently used for upgradable and proxy
contracts and how this could be streamlined by the Solidity language or supported by the
Solidity compiler.

19ϭ30 17ϭ30 SHORT BREAK (hang out in the lobby if you like) 10ϭ30 13ϭ30 1ϭ30 2ϭ30
19ϭ50 17ϭ50 Fixed point types Chris Reitwiessner Open Discussion https://hackmd.io/@franzihei/ry7kn5auI 10ϭ50 13ϭ50 1ϭ50 2ϭ50

Fixed point types should allow a safe and straightforward way to work with nonЋinteger values.
They have been proposed and partly implemented for Solidity for a long time. The latest push in
that direction was halted due to concerns from the community. We would like to take the Solidity
Summit as an opportunity to get more feedback from the broader community: Would you use fĐxed
point types? Which value range do you need? Should we use decimal or binary fĐxed point types?

20ϭ20 18ϭ20 Tracking mapping keys with the Truffle Debugger Harry Altman Talk 11ϭ20 14ϭ20 2ϭ20 3ϭ20
The Solidity language does not keep track of what keys are set in a given mapping. However, the
Truffle Debugger can, when debugging a transaction, keep track of what keys have been accessed
during that transaction, and it can do this even if the mappings are nested inside arrays,
structs, or other mappings. In this talk, we will dissect Truffle Debugger's mapping key
tracking system and learn how it works.

20ϭ50 18ϭ50 Truffle Debugger Demo and Debugging Data Discussion Nick D'Andrea and Chris Reitwiessner Open Discussion https://hackmd.io/@franzihei/rkJ_o9adU11ϭ50 14ϭ50 2ϭ50 3ϭ50
In the early days, the Mix debugger shared the same code base as the Solidity compiler and thus
it was easy for it to retrieve required information about internals of a smart contract. Since
then, the type system and the optimizer have become way more complex and it is not as easy
anymore to decypher what is going on behind the scenes. Some months ago, the Truffle team has
kicked off an initiative for the compiler to provide more detailed debugging information, but
debugging information is not only relevant for debuggers, but also for general analysis tools.
This discussion will be about collecting needs about debugging information and starting to
standardize the data format.

21ϭ35 19ϭ35 End of Day 1 - Good night Europe! 13ϭ00 16ϭ00 4ϭ00 5ϭ00

Let's stay in touch!

Tweet: @solidity_lang
Read: solidity.ethereum.org
Chat: gitter.im/ethereum/solidity

https://www.google.com/url?q=https://hackmd.io/@dr56UxqwTjO-0LGQ1GS5Lw/B1QkhYTOI&sa=D&usd=2&usg=AOvVaw3gS1ivjMuh-H8EVfpLVvJR
https://hackmd.io/@franzihei/BJn0z5pdU
https://www.google.com/url?q=https://hackmd.io/@franzihei/SyIeE5TO8&sa=D&usd=2&usg=AOvVaw1wtJbVPgxAyncHf71X00Q0
https://www.google.com/url?q=https://hackmd.io/@franzihei/ByBTVcpuL&sa=D&usd=2&usg=AOvVaw3UclhQ7jYPvAUiOzzIqYFO
https://hackmd.io/@franzihei/ry7kn5auI
https://www.google.com/url?q=https://hackmd.io/@franzihei/rkJ_o9adU&sa=D&usd=2&usg=AOvVaw3p6AxuL2MEtg8zMlAJqLCm

Solidity DAY 1
Wednesday, 29th of April

Summit 2020
+ April 29-30
+ Join at interspace.solidityЋsummit.ethereum.org

TIME TITLE SPEAKER / MODERATOR FORMAT COLLABORATIVE NOTES OTHER TIME ZONES

CEST GMT/UCT PDT EDT TW / CST JST
13ϭ30 11ϭ30 Welcome to Day 2 Franziska Heintel 4ϭ30 7ϭ30 19ϭ30 20ϭ30
13ϭ35 11ϭ35 Creativity and Solidity Development Ann Kilzer Lightning Talk 4ϭ35 7ϭ35 19ϭ35 20ϭ35

Can the challenges of Solidity development — gas limitations, storage scarcity, and
decentralized computation — create conditions for creative DApp development? Are the parts of
Solidity that often confound developers actually starting points for creative thinking? This
lightning talk will showcase a few novel applications of Solidity, from DApp layering and ERC721
art generation, to some of my personal projects, including a fruitЋbacked cryptocurrency, a
blockchain treasure hunt, and an ERC721 Curry Generator. This talk will also provide insight
into how Curvegrid builds DApps.

13ϭ55 11ϭ30 Optimize Solidity/Yul/Ewasm bytecode via LLVM framework Hung-Ying Tai Talk 4ϭ30 7ϭ30 19ϭ30 20ϭ30
SOLL 0.0.6 release(eta. 2020-03-06) will support Yul constructor and deployer. SOLL can compile
both Solidity(partial of the grammar) and Yul(most of the major grammar) to LLVM IR. When the
LLVM IR is generated, SOLL will apply LLVM optimization passes to reduce the code size, improve
the performance, and eliminate redundant codes. And then SOLL transform these optimized LLVM IR
into Ewasm bytecodes.

In this topic, I want to share about how we optimize via LLVM framework and a new profĐleЋguided
optimization mechanism to analyze wasm runtime execution and adjust the optimization strategies
back to optimization phase to gain more improvement.

14ϭ25 12ϭ25 Introduction to remixЋanalyzer Aniket Lightning Talk 5ϭ25 8ϭ25 20ϭ25 21ϭ25
The remixЋanalyzer is a Solidity static analysis tool.

14ϭ45 12ϭ45 Overview of the Solang Solidity Compiler Sean Young Lightning Talk 5ϭ45 8ϭ45 20ϭ45 21ϭ45
In this talk you'll learn more about the Solang Compiler:
- Why Solang (rust, llvm)
- What targets are supported (substrate, ewasm)
- What is implemented
- Roadmap
- Compiler stages:
 - parser (lalrpop)
 - resolver
 - code emitter
 - standard library
 - linker
- future ideas/directions

15ϭ05 13ϭ05 Detecting DoS vulnerabilities caused by gas limits with fuzzing Sebastian Banescu Talk 6ϭ05 9ϭ05 21ϭ05 22ϭ05
During our audits at Quantstamp, we often fĐnd functions written in Solidity which are prone to
hit out of gas errors because they contain loops over a user defĐned/influenced value. However,
these functions do not run out of gas all the time. It takes a certain input value or a certain
contract state to run out of gas. The big question is: how can we identify that state/value?
This presentation describes an approach to answer this question by using a smart contract
fuzzing approach based on machine learning.

15ϭ35 13ϭ35 Visualization of large code bases with the Solidity visualizer extension for VSCode Gonçalo Sá and Martin Ortner Lightning Talk 6ϭ35 9ϭ35 21ϭ35 22ϭ35
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt
ut labore et dolore magna aliquyam erat, sed diam voluptua.

15ϭ55 13ϭ55 SHORT BREAK (hang out in the lobby if you like) 6ϭ55 9ϭ55 21ϭ55 22ϭ55
16ϭ10 14ϭ10 GasЋunrestricted alternative for .send() and .transfer() Alex Beregszaszi Open Discussion https://hackmd.io/@franzihei/SJ-fp3pOL7ϭ10 10ϭ10 22ϭ10 23ϭ10

.send and .transfer are promoted as ϣthe safe wayϣ to transfer ether. This promise has been
challenged over the years and recent changes introduced in the Istanbul hard fork have prompted
questions again. It is time to review and potentially change how .send and .transfer behave.

16ϭ30 14ϭ30 Introduction to LSP & possible applications to Solidity Christian Parpart Open Discussion https://hackmd.io/@franzihei/B1_FT3TOL7ϭ30 10ϭ30 22ϭ30 23ϭ30
The language server protocol is an initiative by Microsoft to standardize a communication
protocol between IDEs and compilers. It does not only allow lineЋbased error reporting, but also
code completion, "jump to defĐnition" and other features. While code completion might be rather
far off since it has to cope with analysis on invalid source code, "jump to defĐnition" and
other features might be very useful for auditors and developers alike.

17ϭ00 15ϭ00 InЋlanguage testing syntax (with lightning talk from remixЋtests) Alex Beregszaszi and Aniket Open Discussion https://hackmd.io/@franzihei/Hyhpp2Tu88ϭ00 11ϭ00 23ϭ00 0ϭ00
Many languages have builtЋin support for unit testing. Many popular frameworks provide their own
unit testing solutions for Solidity ЌМ unfortunately compatibility between these frameworks is
not yet solved, locking tests in with one of them. Lets discuss together what language support
for unit testing could look like!

17ϭ30 15ϭ30 Mutation Testing with Vertigo Joran Honig 8ϭ30 11ϭ30 23ϭ30 0ϭ30
An introduction to mutation testing and the tool Vertigo, including a discussion where solc,
Truffle and Vertigo could work together.

18ϭ00 16ϭ00 ACTing formal Martin Lundfall and Leo Alt Open Discussion https://hackmd.io/@franzihei/SJbZ02TO89ϭ00 12ϭ00 0ϭ00 1ϭ00
Introduction to ACT, followed by an open discussion around formal verifĐcation and language
features to support more formal specifĐcations inside Solidity.

19ϭ00 17ϭ00 Immutable and explicit copies Alex Beregszaszi and Leo Alt Open Discussion https://hackmd.io/@franzihei/r1WSC36dI10ϭ00 13ϭ00 1ϭ00 2ϭ00
Since potentially unbounded loops in smart contracts lead to a denial of service, it is probably
a good idea to make implicit copies of reference types more visible. This would also have the
benefĐt that it would be clearer whether or not two variables reference the same data area. In
order to achieve that, we would like to propose a new keyword tentatively called ""copyof"" that
allows taking a copy of a value of reference type.

Since they are closely related, it makes sense to also discuss another change to the reference
semantics borrowed from rust:
Marking all variables as ""constant"" or ""immutable"" by default and also enforcing this when
passing them on without copying.

Open questions:
 - immutable by default only for reference types or also value types?
 - syntax
 - immutability for contracts only allows view functions to be called? Does it apply to the
address or the contract itself?
 - copyof does not actually perform the copy, only the assignment or function call does - is
there a better syntax for that?

19ϭ45 17ϭ45 SHORT BREAK (hang out in the lobby if you like) 10ϭ45 13ϭ45 1ϭ45 2ϭ45
20ϭ05 18ϭ05 ModifĐer areas Chris Reitwiessner Open Discussion https://hackmd.io/@franzihei/BkydAh6OL11ϭ05 14ϭ05 2ϭ05 3ϭ05

ModifĐer areas are a proposal to apply one or more modifĐers to a syntactical range of
functions. The idea was to make it easily visible that a collection of functions can e.g. only
be called by the owner or is protected by a mutex. We are not yet enitrely happy with the syntax
for various reasons and would like to get feedback and collect and discuss further ideas.

20ϭ35 18ϭ35 Verify all the sources Ligi Lightning Talk 11ϭ35 14ϭ35 2ϭ35 3ϭ35
In this talk you will learn about source verifĐcation. These topics will be covered:
 - Why is it needed?
 - How is it done?
 - How can it be decentralized?
 - How can you use it?
 - What is wrong with NatSpec and RadSpec?
 - What are the next steps?

20ϭ55 18ϭ55 ETHPM = metadata Nick Gheorghita Open Discussion https://hackmd.io/@franzihei/Hk160n6_U11ϭ55 14ϭ55 2ϭ55 3ϭ55
The Solidity compiler appends the hash of a json structure called the metadata to the deployed
bytecode of each contract by default. The idea behind this feature is to hashЋlink the original
source code into the bytecode, provide the ABI and other information and fĐnally all settings
that are required to reЋcompile the contract. Most of these features overlap with the EthPM
project with the only difference that the compiler needs to generate this information before the
contract has been deployed. Because of that, the EthPM team started an initiative to unify the
two data formats. Until now, we already get pretty far and this session is mostly to agree on
some fĐnal details of the combined metadata and EthPM3 specifĐcation.

21ϭ25 19ϭ25 Functional Solidity Chris Reitwiessner Open Discussion https://hackmd.io/@franzihei/rkhlyapdI12ϭ25 15ϭ25 3ϭ25 4ϭ25
Function types have been part of Solidity for a long time now, but we do not see them widely
used. What are the reasons for that and which changes to the language would be desired in this
area? Would lambda functions with or without capturing be useful to developers? What about
""pure"" functions outside the scope of a contract? Currying?

21ϭ55 19ϭ55 CommunityЋvoted placeholder discussion or open Q&A with the Solidity team Open Discussion 12ϭ55 15ϭ55 3ϭ55 4ϭ55
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt
ut labore et dolore magna aliquyam erat, sed diam voluptua.

22ϭ30 20ϭ30 Wrap up Solidity Summit 2020 13ϭ30 16ϭ30 4ϭ30 5ϭ30

Let's stay in touch!

Tweet: @solidity_lang
Read: solidity.ethereum.org
Chat: gitter.im/ethereum/solidity

https://www.google.com/url?q=https://hackmd.io/@franzihei/SJ-fp3pOL&sa=D&usd=2&usg=AOvVaw2XnJwNcMgEdhj86K2lBfc6
https://www.google.com/url?q=https://hackmd.io/@franzihei/B1_FT3TOL&sa=D&usd=2&usg=AOvVaw2CDDsNfqJJof8-oyULS1VJ
https://www.google.com/url?q=https://hackmd.io/@franzihei/Hyhpp2Tu8&sa=D&usd=2&usg=AOvVaw3PyiIKhsdJMrQkhQsVn-5j
https://www.google.com/url?q=https://hackmd.io/@franzihei/SJbZ02TO8&sa=D&usd=2&usg=AOvVaw1sbdbTuLllWW6Xw8oFss9G
https://www.google.com/url?q=https://hackmd.io/@franzihei/r1WSC36dI&sa=D&usd=2&usg=AOvVaw2NcUSHn_gRraFFJGdmqMYc
https://www.google.com/url?q=https://hackmd.io/@franzihei/BkydAh6OL&sa=D&usd=2&usg=AOvVaw1qbf5LIZ9yxZGP7htmVOxz
https://www.google.com/url?q=https://hackmd.io/@franzihei/Hk160n6_U&sa=D&usd=2&usg=AOvVaw00hZZMODAouYcihf9z5QX0
https://www.google.com/url?q=https://hackmd.io/@franzihei/rkhlyapdI&sa=D&usd=2&usg=AOvVaw0vgcD1KBMzrmM0QKI7qMU3

