A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Integration & Connectivity | ||||||||||||||||||||||||
2 | Connectivity | Integrates with SaaS, databases, cloud platforms, and on-premises systems as required by the customer. | |||||||||||||||||||||||
3 | BI Tool Connectivity | Integrates with BI tools for insights and reporting | |||||||||||||||||||||||
4 | Cross-Platform Integration | Supports diverse platforms and environments including cloud, on-premise and hybrid deployments | |||||||||||||||||||||||
5 | Comprehensive API Access | Provides API access for integration with other tools and automation scripts. | |||||||||||||||||||||||
6 | Data Quality & Monitoring | ||||||||||||||||||||||||
7 | Incremental Profiling | Supports continuous profiling for real-time monitoring. | |||||||||||||||||||||||
8 | Data Corruption Detection | Identifies corrupted data and prevents its propagation through automation flow conroles | |||||||||||||||||||||||
9 | Data Quality Rules Definition | Allows defining data quality rules through an intutive interface | |||||||||||||||||||||||
10 | Data Quality Rules Prediction | Provides and out of the box facility for predicting the data quality problems, creating out of the box data quality rules | |||||||||||||||||||||||
11 | Schema Drift Detection | Automatically detects changes in the data schema, ensuring consistency with the expected schema structure. | |||||||||||||||||||||||
12 | Anomaly Detection | Identifies unusual patterns in the data that could indicate data quality issues or system anomalies. | |||||||||||||||||||||||
13 | Data Quality Monitoring | Monitors the quality of the data, ensuring it adheres to predefined rules and expectations. | |||||||||||||||||||||||
14 | Freshness Check | Checks the freshness of the data to ensure it is up-to-date and ready for consumption. | |||||||||||||||||||||||
15 | Support for Custom Data Quality Metrics | Supports defining and monitoring custom data quality metrics. | |||||||||||||||||||||||
16 | Support for Cyclic Barriers in Quality Failures | Prevents cascading failures in data quality issues. | |||||||||||||||||||||||
17 | Cycle Breaker Capability | Prevents infinite loops in data pipelines. | |||||||||||||||||||||||
18 | Ability to Set Priority in Quality Rules | Allows users to prioritize critical data quality checks and the order of priority | |||||||||||||||||||||||
19 | Real-Time Monitoring | Provides an integrated Monitoring capability to monitor for compliance to the various parameters | |||||||||||||||||||||||
20 | Integration with Pipeline Schedulers | Does the tool provide any integration with pipeline schedulers to stop/pause pipelines based on observed values | |||||||||||||||||||||||
21 | Observability & Pipeline Health | ||||||||||||||||||||||||
22 | Rescue Data Within Pipelines | Mechanisms for recovering data within pipelines. | |||||||||||||||||||||||
23 | Root Cause Analysis (RCA) Metrics | Offers metrics for diagnosing data issues. Does the tool offer an intutive user experience for the same? | |||||||||||||||||||||||
24 | Insights and Alerts for Root Cause Analysis | Provides actionable alerts for resolving issues. | |||||||||||||||||||||||
25 | Pattern Mining | Detects recurring data issues or trends. | |||||||||||||||||||||||
26 | Pushdown Customizations | Offers flexibility to push computations to underlying data systems. | |||||||||||||||||||||||
27 | Data Volume Scalability | Scales efficiently with increased data volume. | |||||||||||||||||||||||
28 | End-to-End Data Pipeline Observability | Tracks the entire data pipeline lifecycle. | |||||||||||||||||||||||
29 | Alerts customization | Customizable alerts via various channels (email, SMS, Slack, etc.), with configurable thresholds. | |||||||||||||||||||||||
30 | Visualization of Data Pipelines | Provides visual representations of data flows and dependencies. | |||||||||||||||||||||||
31 | Governance, Compliance & Security | ||||||||||||||||||||||||
32 | Data Sovereignty | Ensures compliance with data regulations (GDPR, HIPAA, etc.). Also is any data moved to the Observability vendors cloud? | |||||||||||||||||||||||
33 | Data Movement | Does the tool move/process data in their cloud data centers? if Yes, how is the data being secured/ | |||||||||||||||||||||||
34 | Data Processing | Does the tool allow processing of data in organizations internal data engines as required? | |||||||||||||||||||||||
35 | Governance and Compliance Support | Ensures compliance with industry standards and regulatory requirements. | |||||||||||||||||||||||
36 | Role-Based Access Control (RBAC) | Provides role-based access to ensure security. | |||||||||||||||||||||||
37 | Audit Logs and Versioning | Tracks historical changes and maintains audit logs. | |||||||||||||||||||||||
38 | Data Retention and Archival Policies | Supports long-term storage and access to observability data. | |||||||||||||||||||||||
39 | Performance & Scalability | ||||||||||||||||||||||||
40 | Choice of Compute Systems for Observability | Flexibility in selecting compute platforms. Example Snowflake,Databricks , Spark or standard compute to perform the observability task | |||||||||||||||||||||||
41 | Dependency on Compute Platform | Does the tool offer a vendor agnostic compute platform. Minimal reliance on specific compute platforms. | |||||||||||||||||||||||
42 | Operational Infrastructure Costs | Balances cost with infrastructure needs. | |||||||||||||||||||||||
43 | Speed of Policy Execution (Correctness vs Speed) | Offers flexibility in prioritizing speed or accuracy. | |||||||||||||||||||||||
44 | Performance vs Accuracy | Balances speed and accuracy for policy execution. | |||||||||||||||||||||||
45 | Scalability Across Platforms | Scales across cloud or on-premises systems. | |||||||||||||||||||||||
46 | Handling large volume of data | Performance in environments with large datasets and high-throughput data pipelines. | |||||||||||||||||||||||
47 | Streaming Data Support | Supports real-time observability of streaming data. | |||||||||||||||||||||||
48 | Automation & Intelligence | ||||||||||||||||||||||||
49 | Anomaly Prediction with Machine Learning | Uses ML to predict potential anomalies. | |||||||||||||||||||||||
50 | Automated Issue Resolution | Automatically resolves common data issues. | |||||||||||||||||||||||
51 | Automated Documentation | Generates automated reports and documentation. | |||||||||||||||||||||||
52 | Asynchronous Policy Execution | Allows asynchronous execution of policies for non-blocking operations. | |||||||||||||||||||||||
53 | Data Lineage & Dependency Tracking | ||||||||||||||||||||||||
54 | Trusted Lineage | Tracks data lineage across systems and pipelines and able to display it back in the UI while performing analysis on data issues | |||||||||||||||||||||||
55 | Integration with Metadata/Catalogs | If the tool automatically doesnt capture lineage, does it have OOTB integration with industry standard catalog/metadata players | |||||||||||||||||||||||
56 | Cross-System Data Dependency Tracking | Monitors dependencies between different systems. | |||||||||||||||||||||||
57 | Code Change Tracking for Anomalies | Detects anomalies introduced by code changes in data pipelines. | ? | ||||||||||||||||||||||
58 | User Experience & Customization | ||||||||||||||||||||||||
59 | Customizable Dashboards and Reporting | Provides customizable reporting and dashboards for monitoring. | |||||||||||||||||||||||
60 | Self-Serve Capabilities | Offers self-service functionality for non-technical users. | |||||||||||||||||||||||
61 | Collaboration Features | Supports collaboration between teams with shared dashboards, annotations, etc. | |||||||||||||||||||||||
62 | Custom Alerting Mechanisms | Allows configuring custom alerts based on thresholds or rules. | |||||||||||||||||||||||
63 | Integration with Incident Management Systems | Integrates with systems like PagerDuty, Jira, or Opsgenie for issue tracking. | |||||||||||||||||||||||
64 | Vendor Relationship & Exit Strategy | ||||||||||||||||||||||||
65 | Exit Criteria from the Observability Vendor | Identify and flag native and properietary flows. This will be critical in case the observability tools need to be migrated how can the logic and the code be mgirated. Clearly defined exit strategy for switching vendors. | |||||||||||||||||||||||
66 | Price to Value (ROI) Visibility | Offers a balance between cost and the value delivered. | |||||||||||||||||||||||
67 | Deployment Flexibility | Support for on-premises, cloud, and hybrid environments, as well as containerized deployments. | |||||||||||||||||||||||
68 | Cost Structure | Transparency and flexibility in pricing models, including the total cost of ownership (TCO) | |||||||||||||||||||||||
69 | Licensing Options | Licensing terms that fit the organization’s needs, including per-user, per-node, or usage-based pricing. | |||||||||||||||||||||||
70 | FinOps | Does the tool have built in Fin-Ops construct helping users undertand where the observabilty task should be run and/or intelligent distribution of workloads optimizing cost | |||||||||||||||||||||||
71 | |||||||||||||||||||||||||
72 | |||||||||||||||||||||||||
73 | |||||||||||||||||||||||||
74 | |||||||||||||||||||||||||
75 | |||||||||||||||||||||||||
76 | |||||||||||||||||||||||||
77 | |||||||||||||||||||||||||
78 | |||||||||||||||||||||||||
79 | |||||||||||||||||||||||||
80 | |||||||||||||||||||||||||
81 | |||||||||||||||||||||||||
82 | |||||||||||||||||||||||||
83 | |||||||||||||||||||||||||
84 | |||||||||||||||||||||||||
85 | |||||||||||||||||||||||||
86 | |||||||||||||||||||||||||
87 | |||||||||||||||||||||||||
88 | |||||||||||||||||||||||||
89 | |||||||||||||||||||||||||
90 | |||||||||||||||||||||||||
91 | |||||||||||||||||||||||||
92 | |||||||||||||||||||||||||
93 | |||||||||||||||||||||||||
94 | |||||||||||||||||||||||||
95 | |||||||||||||||||||||||||
96 | |||||||||||||||||||||||||
97 | |||||||||||||||||||||||||
98 | |||||||||||||||||||||||||
99 | |||||||||||||||||||||||||
100 |