A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Chosen Personas: | |||||||||||||||||||||||||
2 | Early Career Scientist (ECS) | |||||||||||||||||||||||||
3 | Science Data Librarian (SDL) | |||||||||||||||||||||||||
4 | College Educator (CE) | |||||||||||||||||||||||||
5 | ||||||||||||||||||||||||||
6 | DIL_Discovery & acquisition of data topics | Ability to find & use disciplinary data repositories; evaluate quality of data for a given domain; be able to import & convert data to use locally. | ||||||||||||||||||||||||
7 | ||||||||||||||||||||||||||
8 | ECS: Finding the appropriate discovery system for their data. | |||||||||||||||||||||||||
9 | ECS: Developing an understanding of the system behind searching for your data and my role in it (as an ECS) | |||||||||||||||||||||||||
10 | ECS: How is data organized in most data repositories? | |||||||||||||||||||||||||
11 | ECS: Where does the information come from that I see in search results? | |||||||||||||||||||||||||
12 | ECS: How do I know that the data I want to retrieve are good quality data? | |||||||||||||||||||||||||
13 | ECS: What should I think about when downloading the data I find? Are there formats that would be better than others and why? | |||||||||||||||||||||||||
14 | ||||||||||||||||||||||||||
15 | CE: How can you get some help for your students who don't quite know which data repositories to look for data in? | |||||||||||||||||||||||||
16 | CE: What are the differences between different data repositories so that I can direct my students to the best ones for the domain of the class | |||||||||||||||||||||||||
17 | CE: What are some of the key features that my student should be aware of when working with repositories/data | |||||||||||||||||||||||||
18 | CE: What are some of the key policies that my students should understand when working with repositories/data | |||||||||||||||||||||||||
19 | ||||||||||||||||||||||||||
20 | ||||||||||||||||||||||||||
21 | SDL: Understanding the types of information to ask in order to appraise and select datasets for ingest | |||||||||||||||||||||||||
22 | SDL: Understanding the different types of repositories (e.g. domain, institutional, open, with fee, etc). | |||||||||||||||||||||||||
23 | SDL: Determining which repository the data should be submitted to. | |||||||||||||||||||||||||
24 | SDL: How to assess the quality of the repository in order to provide recommendations/guidance to the reseach community/faculty. | |||||||||||||||||||||||||
25 | SDL: For different subject domains, what are the best data repositories to recommend to my patrons and why? | |||||||||||||||||||||||||
26 | SDL: For the best repositories, are there special tips or tricks for finding and/or downloading data that I can recommend to my patrons? | |||||||||||||||||||||||||
27 | ||||||||||||||||||||||||||
28 | DIL_Databases (DBs) & data formats | Understanding of DBs & the strengths & weaknesses of common DB products used in a given domain, knowledge & appropriateness of common data formats for a given domain Principles of database design. | ||||||||||||||||||||||||
29 | ||||||||||||||||||||||||||
30 | ECS: Understanding best practices for DBs and data formats, staying up-to-date on best practices | |||||||||||||||||||||||||
31 | ECS: What are some of the factors I should think about when choosing a database for tracking my data? | |||||||||||||||||||||||||
32 | ECS: What are some of the best practices that I should be aware to ensure my data/dadtabase format is consistent with the science community that I am part of | |||||||||||||||||||||||||
33 | ECS: What factors should I consider if I want to update my database to a new version in terms of the impact on the data that's already in it, e.g., is that a new version and waht should I do about that, if anything? | |||||||||||||||||||||||||
34 | ECS: What data formats are most often used in my field and why | |||||||||||||||||||||||||
35 | ||||||||||||||||||||||||||
36 | CE: What are some of the key data formats that my student should be familiar with and understand how to choose between them. | |||||||||||||||||||||||||
37 | CE: What are the recommended data formats for the types of data that my students are working with. | |||||||||||||||||||||||||
38 | CE: What are the best practices when building/working with databases. | |||||||||||||||||||||||||
39 | CE: What are the tools that can help my student to work more efficiently with databases. | |||||||||||||||||||||||||
40 | CE: What are the tools that my student can use to convert different data formats. | |||||||||||||||||||||||||
41 | ||||||||||||||||||||||||||
42 | SDL: Keeping up with trends and best practices so that recommendations can be provided to ECS and CE as appropriate. | |||||||||||||||||||||||||
43 | SDL: What are the recommended data formats and the rational for their recommendataions for the major types of data that the academic/research community is producing. | |||||||||||||||||||||||||
44 | SDL: Maintaining a working knowledge of databases and data formats. | |||||||||||||||||||||||||
45 | SDL: What are the key tools that the academic/research community is using to process/work with their data | |||||||||||||||||||||||||
46 | ||||||||||||||||||||||||||
47 | DIL_Data conversion & interoperability | Proficiency in data format migration; benefits & impact of format migration on data content; understanding of format & software obsolescence over time. | ||||||||||||||||||||||||
48 | ||||||||||||||||||||||||||
49 | ECS: What are some of the factors that will influence my data's compatibility/interoperability with other data from my research community. | |||||||||||||||||||||||||
50 | ECS: What are some of the processing that users outside of my research community might need to perform in order to use my data. | |||||||||||||||||||||||||
51 | ||||||||||||||||||||||||||
52 | CE: Reasons that my students be concernted with format migration. | |||||||||||||||||||||||||
53 | CE: What are the areas that my students should be aware of to help minimize the risk of data loss due to incompatibility. | |||||||||||||||||||||||||
54 | ||||||||||||||||||||||||||
55 | SDL: Determining when data or a format needs to be migrated. Who needs to be involved - IT, Finance, Records. | |||||||||||||||||||||||||
56 | SDL: What are the key technologies that could be used to assist data consersion/migration. | |||||||||||||||||||||||||
57 | SDL: What are the best practices/lessons learned for data conversion/migration. | |||||||||||||||||||||||||
58 | ||||||||||||||||||||||||||
59 | DIL_Data processing & analysis | Familiarity with basic data processing, analysis & workflow tools for a given domain including scripting & programming; understanding of impact of processing on data content. | ||||||||||||||||||||||||
60 | ||||||||||||||||||||||||||
61 | ECL: Which tools and methods are available for data processing and analysis and how do I choose between them? | |||||||||||||||||||||||||
62 | ECL: What are best practices for documentation of processing and analysis | |||||||||||||||||||||||||
63 | ||||||||||||||||||||||||||
64 | ||||||||||||||||||||||||||
65 | ||||||||||||||||||||||||||
66 | DIL_Data visualization & representation | Understanding of reason / purpose & techniques for communicating representations of data; proficiency in use of basic visualization tools of a discipline. | ||||||||||||||||||||||||
67 | ||||||||||||||||||||||||||
68 | DIL_Data management & organization | Understanding of data lifecycle, need for tracking relationships of raw to processed data, and full to partial datasets; know how to develop plans/procedures for managing data. | ||||||||||||||||||||||||
69 | ||||||||||||||||||||||||||
70 | ||||||||||||||||||||||||||
71 | SDL: Able to relay steps in lifecycle to ECS and CE so that data management functions occur at appropriate times. | |||||||||||||||||||||||||
72 | DIL_Data quality & documentation | Ability to assess, document & resolve errors, incompletion or corruption of data using metadata, provenance & version tracking tools; documenting research context for datasets. | ||||||||||||||||||||||||
73 | ||||||||||||||||||||||||||
74 | DIL_Metadata & data description | Knowledge of what metadata is, why it is useful & how to create it including tools common to a given domain. | ||||||||||||||||||||||||
75 | ||||||||||||||||||||||||||
76 | ||||||||||||||||||||||||||
77 | SDL: Current on acceptable metadata standards and able to assist ECS and CS on building their respective metadata. | |||||||||||||||||||||||||
78 | DIL_Ethics & attribution | Understanding of benefits & caveats associated with data & software use, re-use and sharing including intellectual property, privacy & confidentiality issues; value of attribution. | ||||||||||||||||||||||||
79 | ||||||||||||||||||||||||||
80 | DIL_Data curation & re-use | Understanding of the spectrum & interrelationship of activities associated with the mngmnt of data thruout its lifecycle for purposes of data use, re-use & science reproducibility. | ||||||||||||||||||||||||
81 | ||||||||||||||||||||||||||
82 | ||||||||||||||||||||||||||
83 | ||||||||||||||||||||||||||
84 | DIL_Data preservation | Understanding of the value, need, benefits & costs of making/keeping data available and re-usable over the long-term; knowledge of roles & tasks associated w/ data preservation. | ||||||||||||||||||||||||
85 | ||||||||||||||||||||||||||
86 | ||||||||||||||||||||||||||
87 | SDL: Acquires a working knowledge of the science data value allowing the appropriate preservation actions to be taken at the proper points in the lifecyle of the science data. | |||||||||||||||||||||||||
88 | ||||||||||||||||||||||||||
89 | ||||||||||||||||||||||||||
90 | ||||||||||||||||||||||||||
91 | ||||||||||||||||||||||||||
92 | ||||||||||||||||||||||||||
93 | ||||||||||||||||||||||||||
94 | ||||||||||||||||||||||||||
95 | ||||||||||||||||||||||||||
96 | ||||||||||||||||||||||||||
97 | ||||||||||||||||||||||||||
98 | ||||||||||||||||||||||||||
99 | ||||||||||||||||||||||||||
100 |