ABCDEFGHIJKLMNOPQRSTUVWXYZ
1
CommentOld video
2
menitioning in class discussionhttps://youtu.be/7hX8yKCX6xM?t=2466
3
AWS/GCPhttps://youtu.be/7hX8yKCX6xM?t=2493
4
mentioning credits google and amazon give for the coursehttps://youtu.be/7hX8yKCX6xM?t=2531
5
mentioning credits google and amazon give for the coursehttps://youtu.be/7hX8yKCX6xM?t=2531
6
Setting up a gpu serverhttps://youtu.be/7hX8yKCX6xM?t=2555
7
5 recommended platformshttps://youtu.be/7hX8yKCX6xM?t=2600
8
Google compute plaform & salamanderhttps://youtu.be/7hX8yKCX6xM?t=2706
9
general sense on the setup stepshttps://youtu.be/7hX8yKCX6xM?t=2924
10
salamanderhttps://youtu.be/7hX8yKCX6xM?t=2945
11
google compute platformhttps://youtu.be/7hX8yKCX6xM?t=2991
12
Slide 1, The mooc starts herehttps://youtu.be/7hX8yKCX6xM?t=3088
13
mentioning threads that platform representatives monitorhttps://youtu.be/7hX8yKCX6xM?t=3123
14
Welcomehttps://youtu.be/7hX8yKCX6xM?t=3178
15
notebook tuorialhttps://youtu.be/7hX8yKCX6xM?t=3226
16
(btw is it disturbing with notifications from slack for you guys?)https://youtu.be/7hX8yKCX6xM?t=3244
17
mentioning jupyter notebookshttps://youtu.be/7hX8yKCX6xM?t=3348
18
you can do deep learning. mentioning <http://course-v3.fast.ai|course-v3.fast.ai> and forums
https://youtu.be/7hX8yKCX6xM?t=3482
19
jeremy introduces himselfhttps://youtu.be/7hX8yKCX6xM?t=3508
20
makaing deep learning accessiblehttps://youtu.be/7hX8yKCX6xM?t=3604
21
about the 7 lessions,https://youtu.be/7hX8yKCX6xM?t=3635
22
10h/weekhttps://youtu.be/7hX8yKCX6xM?t=3666
23
about deep learning, claims about deep learning, black box, needs data etc
https://youtu.be/7hX8yKCX6xM?t=3738
24
what can you do after lecture 1https://youtu.be/7hX8yKCX6xM?t=3807
25
baseball/crickethttps://youtu.be/7hX8yKCX6xM?t=3831
26
Start by looking at codehttps://youtu.be/7hX8yKCX6xM?t=3842
27
opening jupyter notebook, lesson 1https://youtu.be/7hX8yKCX6xM?t=3929
28
about the libraryhttps://youtu.be/7hX8yKCX6xM?t=4030
29
<http://docs.fast.ai/>https://youtu.be/7hX8yKCX6xM?t=4037
30
pytorchhttps://youtu.be/7hX8yKCX6xM?t=4052
31
vision, nlp, tabular, collaborative datahttps://youtu.be/7hX8yKCX6xM?t=4118
32
import * enables you to tab completehttps://youtu.be/7hX8yKCX6xM?t=4194
33
looking at data and the datasetshttps://youtu.be/7hX8yKCX6xM?t=4254
34
pet datasethttps://youtu.be/7hX8yKCX6xM?t=4366
35
fine grained classificationhttps://youtu.be/7hX8yKCX6xM?t=4434
36
url constants in fastaihttps://youtu.be/7hX8yKCX6xM?t=4557
37
python 3 slash pathlibhttps://youtu.be/7hX8yKCX6xM?t=4650
38
what do you do with a new datasethttps://youtu.be/7hX8yKCX6xM?t=4680
39
how do we get the labelshttps://youtu.be/7hX8yKCX6xM?t=4724
40
imagedatabunchhttps://youtu.be/7hX8yKCX6xM?t=4766
41
from_name_rehttps://youtu.be/7hX8yKCX6xM?t=4790
42
about sizeshttps://youtu.be/7hX8yKCX6xM?t=4862
43
ImagrDataBunch objecthttps://youtu.be/7hX8yKCX6xM?t=4953
44
normalizehttps://youtu.be/7hX8yKCX6xM?t=5001
45
q: what does the fn do if img size is not 224https://youtu.be/7hX8yKCX6xM?t=5018
46
q: what does the fn do if img size is not 224https://youtu.be/7hX8yKCX6xM?t=5018
47
q: what does it mean to normalize imageshttps://youtu.be/7hX8yKCX6xM?t=5098
48
mean 0, standard deviation 1 on all color channelshttps://youtu.be/7hX8yKCX6xM?t=5149
49
q: isnt 256 size more practical --&gt; 7x7https://youtu.be/7hX8yKCX6xM?t=5174
50
looking at your data: data.show_batchhttps://youtu.be/7hX8yKCX6xM?t=5224
51
label names are claled classeshttps://youtu.be/7hX8yKCX6xM?t=5259
52
`data.classes`https://youtu.be/7hX8yKCX6xM?t=5261
53
`data.c` = number of classes, for visionhttps://youtu.be/7hX8yKCX6xM?t=5289
54
training a model - using a learnerhttps://youtu.be/7hX8yKCX6xM?t=5318
55
2 things: databunch / model, archhttps://youtu.be/7hX8yKCX6xM?t=5361
56
starting with resnet 34 since faster, later 50, start with the smaller one and see if it is good enough
https://youtu.be/7hX8yKCX6xM?t=5418
57
list of `metrics`, things that gets printed out as it is training, error rate etchttps://youtu.be/7hX8yKCX6xM?t=5439
58
imgnet weights, transfer learninghttps://youtu.be/7hX8yKCX6xM?t=5498
59
30 example enoughhttps://youtu.be/7hX8yKCX6xM?t=5604
60
overfittinghttps://youtu.be/7hX8yKCX6xM?t=5631
61
validation sethttps://youtu.be/7hX8yKCX6xM?t=5650
62
`learn.fit_one_cycle`https://youtu.be/7hX8yKCX6xM?t=5707
63
shift tab to see definitionhttps://youtu.be/7hX8yKCX6xM?t=5776
64
4 times how many times do we go through the dataset (overfitting vs pets in general)
https://youtu.be/7hX8yKCX6xM?t=5796
65
looking at the paper, comparing the solution to the 2012 state of the arthttps://youtu.be/7hX8yKCX6xM?t=5879
66
break instructionshttps://youtu.be/7hX8yKCX6xM?t=6013
67
breakhttps://youtu.be/7hX8yKCX6xM?t=6055
68
( we can clean these notes, and generate time stamped links to the correct place int the videos) feel free to add your own
https://youtu.be/7hX8yKCX6xM?t=6266
69
end of breakhttps://youtu.be/7hX8yKCX6xM?t=6576
70
startinghttps://youtu.be/7hX8yKCX6xM?t=6615
71
3-4 lines of code smashed state of arthttps://youtu.be/7hX8yKCX6xM?t=6644
72
feedback: fell into habit of googling without running the code, regret spent 70h didnt run code So spend time running the code
https://youtu.be/7hX8yKCX6xM?t=6668
73
looking at what came out of the learnerhttps://youtu.be/7hX8yKCX6xM?t=6734
74
about <http://fast.ai|fast.ai> platformhttps://youtu.be/7hX8yKCX6xM?t=6766
75
<http://docs.fast.ai|docs.fast.ai>https://youtu.be/7hX8yKCX6xM?t=6777
76
comparing dogs vs cats table fastai resnet34, fastai resnet50 Kerashttps://youtu.be/7hX8yKCX6xM?t=6792
77
when we can pick a good default w do it for youhttps://youtu.be/7hX8yKCX6xM?t=6868
78
how far can you take it, nlp example featured in wiredhttps://youtu.be/7hX8yKCX6xM?t=6875
79
github: "natural language semantic code search"https://youtu.be/7hX8yKCX6xM?t=6933
80
forumshttps://youtu.be/7hX8yKCX6xM?t=6980
81
today: image classificationhttps://youtu.be/7hX8yKCX6xM?t=6999
82
next 7 weeks deeperhttps://youtu.be/7hX8yKCX6xM?t=7003
83
where does it take you: sarah hooker example, delta analytics, mobile phones to listen to chainsaw noises, alerting rangers to stop deforestation, she is now a google brain researcher, setting up google brain research center in africa
https://youtu.be/7hX8yKCX6xM?t=7007
84
chrisitine MLeavey Payne at <http://open.ai|open.ai>, music samples, automatically create chamber music compositions, classical pianist
https://youtu.be/7hX8yKCX6xM?t=7109
85
advice:pick one project, do it really well and make it fantastichttps://youtu.be/7hX8yKCX6xM?t=7195
86
apply your skills in your domainhttps://youtu.be/7hX8yKCX6xM?t=7224
87
alex, overfitting, combinding radiology skills: combine your domain expertise
https://youtu.be/7hX8yKCX6xM?t=7248
88
alex, overfitting, combinding radiology skills: combine your domain expertise
https://youtu.be/7hX8yKCX6xM?t=7248
89
Melissa Fabros, helped Kiva, a microlending lending to build a system to recognize faces (also black women and not only white men)
https://youtu.be/7hX8yKCX6xM?t=7323
90
Envision, help blind people to understand the world around themhttps://youtu.be/7hX8yKCX6xM?t=7413
91
the course can get you to the cutting edge, example world record in image net with $40 of compute
https://youtu.be/7hX8yKCX6xM?t=7450
92
helena saren, @glagolista a new style of art combines her paintings with GANs
https://youtu.be/7hX8yKCX6xM?t=7498
93
kanye pictures, style transfer, job at awshttps://youtu.be/7hX8yKCX6xM?t=7555
94
splunk: algorith mafter lesson 3, indentify fraudhttps://youtu.be/7hX8yKCX6xM?t=7582
95
hotdog not hotdog, emmy nominated :slightly_smiling_face:https://youtu.be/7hX8yKCX6xM?t=7604
96
forum threads can turn into to something great, language model zoo, lots of different languages =&gt; academic comptetition, thai, german state of the art, done by students working together on the forum
https://youtu.be/7hX8yKCX6xM?t=7635
97
dont be intimidated, you can feel like you are the only new person. you get state of the art, i cant start my server.. don't be shy, provide info, everyone on the forum started out intimidated
https://youtu.be/7hX8yKCX6xM?t=7697
98
q: why are you using resnet vs inception: resnet good enough, inception memory intesinve, it is ok
https://youtu.be/7hX8yKCX6xM?t=7777
99
code: train model, generates weightshttps://youtu.be/7hX8yKCX6xM?t=7914
100
`learn.save`https://youtu.be/7hX8yKCX6xM?t=7940