| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Comment | Old video | ||||||||||||||||||||||||
2 | menitioning in class discussion | https://youtu.be/7hX8yKCX6xM?t=2466 | ||||||||||||||||||||||||
3 | AWS/GCP | https://youtu.be/7hX8yKCX6xM?t=2493 | ||||||||||||||||||||||||
4 | mentioning credits google and amazon give for the course | https://youtu.be/7hX8yKCX6xM?t=2531 | ||||||||||||||||||||||||
5 | mentioning credits google and amazon give for the course | https://youtu.be/7hX8yKCX6xM?t=2531 | ||||||||||||||||||||||||
6 | Setting up a gpu server | https://youtu.be/7hX8yKCX6xM?t=2555 | ||||||||||||||||||||||||
7 | 5 recommended platforms | https://youtu.be/7hX8yKCX6xM?t=2600 | ||||||||||||||||||||||||
8 | Google compute plaform & salamander | https://youtu.be/7hX8yKCX6xM?t=2706 | ||||||||||||||||||||||||
9 | general sense on the setup steps | https://youtu.be/7hX8yKCX6xM?t=2924 | ||||||||||||||||||||||||
10 | salamander | https://youtu.be/7hX8yKCX6xM?t=2945 | ||||||||||||||||||||||||
11 | google compute platform | https://youtu.be/7hX8yKCX6xM?t=2991 | ||||||||||||||||||||||||
12 | Slide 1, The mooc starts here | https://youtu.be/7hX8yKCX6xM?t=3088 | ||||||||||||||||||||||||
13 | mentioning threads that platform representatives monitor | https://youtu.be/7hX8yKCX6xM?t=3123 | ||||||||||||||||||||||||
14 | Welcome | https://youtu.be/7hX8yKCX6xM?t=3178 | ||||||||||||||||||||||||
15 | notebook tuorial | https://youtu.be/7hX8yKCX6xM?t=3226 | ||||||||||||||||||||||||
16 | (btw is it disturbing with notifications from slack for you guys?) | https://youtu.be/7hX8yKCX6xM?t=3244 | ||||||||||||||||||||||||
17 | mentioning jupyter notebooks | https://youtu.be/7hX8yKCX6xM?t=3348 | ||||||||||||||||||||||||
18 | you can do deep learning. mentioning <http://course-v3.fast.ai|course-v3.fast.ai> and forums | https://youtu.be/7hX8yKCX6xM?t=3482 | ||||||||||||||||||||||||
19 | jeremy introduces himself | https://youtu.be/7hX8yKCX6xM?t=3508 | ||||||||||||||||||||||||
20 | makaing deep learning accessible | https://youtu.be/7hX8yKCX6xM?t=3604 | ||||||||||||||||||||||||
21 | about the 7 lessions, | https://youtu.be/7hX8yKCX6xM?t=3635 | ||||||||||||||||||||||||
22 | 10h/week | https://youtu.be/7hX8yKCX6xM?t=3666 | ||||||||||||||||||||||||
23 | about deep learning, claims about deep learning, black box, needs data etc | https://youtu.be/7hX8yKCX6xM?t=3738 | ||||||||||||||||||||||||
24 | what can you do after lecture 1 | https://youtu.be/7hX8yKCX6xM?t=3807 | ||||||||||||||||||||||||
25 | baseball/cricket | https://youtu.be/7hX8yKCX6xM?t=3831 | ||||||||||||||||||||||||
26 | Start by looking at code | https://youtu.be/7hX8yKCX6xM?t=3842 | ||||||||||||||||||||||||
27 | opening jupyter notebook, lesson 1 | https://youtu.be/7hX8yKCX6xM?t=3929 | ||||||||||||||||||||||||
28 | about the library | https://youtu.be/7hX8yKCX6xM?t=4030 | ||||||||||||||||||||||||
29 | <http://docs.fast.ai/> | https://youtu.be/7hX8yKCX6xM?t=4037 | ||||||||||||||||||||||||
30 | pytorch | https://youtu.be/7hX8yKCX6xM?t=4052 | ||||||||||||||||||||||||
31 | vision, nlp, tabular, collaborative data | https://youtu.be/7hX8yKCX6xM?t=4118 | ||||||||||||||||||||||||
32 | import * enables you to tab complete | https://youtu.be/7hX8yKCX6xM?t=4194 | ||||||||||||||||||||||||
33 | looking at data and the datasets | https://youtu.be/7hX8yKCX6xM?t=4254 | ||||||||||||||||||||||||
34 | pet dataset | https://youtu.be/7hX8yKCX6xM?t=4366 | ||||||||||||||||||||||||
35 | fine grained classification | https://youtu.be/7hX8yKCX6xM?t=4434 | ||||||||||||||||||||||||
36 | url constants in fastai | https://youtu.be/7hX8yKCX6xM?t=4557 | ||||||||||||||||||||||||
37 | python 3 slash pathlib | https://youtu.be/7hX8yKCX6xM?t=4650 | ||||||||||||||||||||||||
38 | what do you do with a new dataset | https://youtu.be/7hX8yKCX6xM?t=4680 | ||||||||||||||||||||||||
39 | how do we get the labels | https://youtu.be/7hX8yKCX6xM?t=4724 | ||||||||||||||||||||||||
40 | imagedatabunch | https://youtu.be/7hX8yKCX6xM?t=4766 | ||||||||||||||||||||||||
41 | from_name_re | https://youtu.be/7hX8yKCX6xM?t=4790 | ||||||||||||||||||||||||
42 | about sizes | https://youtu.be/7hX8yKCX6xM?t=4862 | ||||||||||||||||||||||||
43 | ImagrDataBunch object | https://youtu.be/7hX8yKCX6xM?t=4953 | ||||||||||||||||||||||||
44 | normalize | https://youtu.be/7hX8yKCX6xM?t=5001 | ||||||||||||||||||||||||
45 | q: what does the fn do if img size is not 224 | https://youtu.be/7hX8yKCX6xM?t=5018 | ||||||||||||||||||||||||
46 | q: what does the fn do if img size is not 224 | https://youtu.be/7hX8yKCX6xM?t=5018 | ||||||||||||||||||||||||
47 | q: what does it mean to normalize images | https://youtu.be/7hX8yKCX6xM?t=5098 | ||||||||||||||||||||||||
48 | mean 0, standard deviation 1 on all color channels | https://youtu.be/7hX8yKCX6xM?t=5149 | ||||||||||||||||||||||||
49 | q: isnt 256 size more practical --> 7x7 | https://youtu.be/7hX8yKCX6xM?t=5174 | ||||||||||||||||||||||||
50 | looking at your data: data.show_batch | https://youtu.be/7hX8yKCX6xM?t=5224 | ||||||||||||||||||||||||
51 | label names are claled classes | https://youtu.be/7hX8yKCX6xM?t=5259 | ||||||||||||||||||||||||
52 | `data.classes` | https://youtu.be/7hX8yKCX6xM?t=5261 | ||||||||||||||||||||||||
53 | `data.c` = number of classes, for vision | https://youtu.be/7hX8yKCX6xM?t=5289 | ||||||||||||||||||||||||
54 | training a model - using a learner | https://youtu.be/7hX8yKCX6xM?t=5318 | ||||||||||||||||||||||||
55 | 2 things: databunch / model, arch | https://youtu.be/7hX8yKCX6xM?t=5361 | ||||||||||||||||||||||||
56 | starting with resnet 34 since faster, later 50, start with the smaller one and see if it is good enough | https://youtu.be/7hX8yKCX6xM?t=5418 | ||||||||||||||||||||||||
57 | list of `metrics`, things that gets printed out as it is training, error rate etc | https://youtu.be/7hX8yKCX6xM?t=5439 | ||||||||||||||||||||||||
58 | imgnet weights, transfer learning | https://youtu.be/7hX8yKCX6xM?t=5498 | ||||||||||||||||||||||||
59 | 30 example enough | https://youtu.be/7hX8yKCX6xM?t=5604 | ||||||||||||||||||||||||
60 | overfitting | https://youtu.be/7hX8yKCX6xM?t=5631 | ||||||||||||||||||||||||
61 | validation set | https://youtu.be/7hX8yKCX6xM?t=5650 | ||||||||||||||||||||||||
62 | `learn.fit_one_cycle` | https://youtu.be/7hX8yKCX6xM?t=5707 | ||||||||||||||||||||||||
63 | shift tab to see definition | https://youtu.be/7hX8yKCX6xM?t=5776 | ||||||||||||||||||||||||
64 | 4 times how many times do we go through the dataset (overfitting vs pets in general) | https://youtu.be/7hX8yKCX6xM?t=5796 | ||||||||||||||||||||||||
65 | looking at the paper, comparing the solution to the 2012 state of the art | https://youtu.be/7hX8yKCX6xM?t=5879 | ||||||||||||||||||||||||
66 | break instructions | https://youtu.be/7hX8yKCX6xM?t=6013 | ||||||||||||||||||||||||
67 | break | https://youtu.be/7hX8yKCX6xM?t=6055 | ||||||||||||||||||||||||
68 | ( we can clean these notes, and generate time stamped links to the correct place int the videos) feel free to add your own | https://youtu.be/7hX8yKCX6xM?t=6266 | ||||||||||||||||||||||||
69 | end of break | https://youtu.be/7hX8yKCX6xM?t=6576 | ||||||||||||||||||||||||
70 | starting | https://youtu.be/7hX8yKCX6xM?t=6615 | ||||||||||||||||||||||||
71 | 3-4 lines of code smashed state of art | https://youtu.be/7hX8yKCX6xM?t=6644 | ||||||||||||||||||||||||
72 | feedback: fell into habit of googling without running the code, regret spent 70h didnt run code So spend time running the code | https://youtu.be/7hX8yKCX6xM?t=6668 | ||||||||||||||||||||||||
73 | looking at what came out of the learner | https://youtu.be/7hX8yKCX6xM?t=6734 | ||||||||||||||||||||||||
74 | about <http://fast.ai|fast.ai> platform | https://youtu.be/7hX8yKCX6xM?t=6766 | ||||||||||||||||||||||||
75 | <http://docs.fast.ai|docs.fast.ai> | https://youtu.be/7hX8yKCX6xM?t=6777 | ||||||||||||||||||||||||
76 | comparing dogs vs cats table fastai resnet34, fastai resnet50 Keras | https://youtu.be/7hX8yKCX6xM?t=6792 | ||||||||||||||||||||||||
77 | when we can pick a good default w do it for you | https://youtu.be/7hX8yKCX6xM?t=6868 | ||||||||||||||||||||||||
78 | how far can you take it, nlp example featured in wired | https://youtu.be/7hX8yKCX6xM?t=6875 | ||||||||||||||||||||||||
79 | github: "natural language semantic code search" | https://youtu.be/7hX8yKCX6xM?t=6933 | ||||||||||||||||||||||||
80 | forums | https://youtu.be/7hX8yKCX6xM?t=6980 | ||||||||||||||||||||||||
81 | today: image classification | https://youtu.be/7hX8yKCX6xM?t=6999 | ||||||||||||||||||||||||
82 | next 7 weeks deeper | https://youtu.be/7hX8yKCX6xM?t=7003 | ||||||||||||||||||||||||
83 | where does it take you: sarah hooker example, delta analytics, mobile phones to listen to chainsaw noises, alerting rangers to stop deforestation, she is now a google brain researcher, setting up google brain research center in africa | https://youtu.be/7hX8yKCX6xM?t=7007 | ||||||||||||||||||||||||
84 | chrisitine MLeavey Payne at <http://open.ai|open.ai>, music samples, automatically create chamber music compositions, classical pianist | https://youtu.be/7hX8yKCX6xM?t=7109 | ||||||||||||||||||||||||
85 | advice:pick one project, do it really well and make it fantastic | https://youtu.be/7hX8yKCX6xM?t=7195 | ||||||||||||||||||||||||
86 | apply your skills in your domain | https://youtu.be/7hX8yKCX6xM?t=7224 | ||||||||||||||||||||||||
87 | alex, overfitting, combinding radiology skills: combine your domain expertise | https://youtu.be/7hX8yKCX6xM?t=7248 | ||||||||||||||||||||||||
88 | alex, overfitting, combinding radiology skills: combine your domain expertise | https://youtu.be/7hX8yKCX6xM?t=7248 | ||||||||||||||||||||||||
89 | Melissa Fabros, helped Kiva, a microlending lending to build a system to recognize faces (also black women and not only white men) | https://youtu.be/7hX8yKCX6xM?t=7323 | ||||||||||||||||||||||||
90 | Envision, help blind people to understand the world around them | https://youtu.be/7hX8yKCX6xM?t=7413 | ||||||||||||||||||||||||
91 | the course can get you to the cutting edge, example world record in image net with $40 of compute | https://youtu.be/7hX8yKCX6xM?t=7450 | ||||||||||||||||||||||||
92 | helena saren, @glagolista a new style of art combines her paintings with GANs | https://youtu.be/7hX8yKCX6xM?t=7498 | ||||||||||||||||||||||||
93 | kanye pictures, style transfer, job at aws | https://youtu.be/7hX8yKCX6xM?t=7555 | ||||||||||||||||||||||||
94 | splunk: algorith mafter lesson 3, indentify fraud | https://youtu.be/7hX8yKCX6xM?t=7582 | ||||||||||||||||||||||||
95 | hotdog not hotdog, emmy nominated :slightly_smiling_face: | https://youtu.be/7hX8yKCX6xM?t=7604 | ||||||||||||||||||||||||
96 | forum threads can turn into to something great, language model zoo, lots of different languages => academic comptetition, thai, german state of the art, done by students working together on the forum | https://youtu.be/7hX8yKCX6xM?t=7635 | ||||||||||||||||||||||||
97 | dont be intimidated, you can feel like you are the only new person. you get state of the art, i cant start my server.. don't be shy, provide info, everyone on the forum started out intimidated | https://youtu.be/7hX8yKCX6xM?t=7697 | ||||||||||||||||||||||||
98 | q: why are you using resnet vs inception: resnet good enough, inception memory intesinve, it is ok | https://youtu.be/7hX8yKCX6xM?t=7777 | ||||||||||||||||||||||||
99 | code: train model, generates weights | https://youtu.be/7hX8yKCX6xM?t=7914 | ||||||||||||||||||||||||
100 | `learn.save` | https://youtu.be/7hX8yKCX6xM?t=7940 |