ABCDEFGHIJKLMNOPQRSTUVWXYZAAAB
1
2
Document
Obviously AI Sample Data
3
Description
Data Formatting Explained
4
Date08/21/2019
5
6
Notes:
This document explains how a dataset should be structured to work on Obviously AI.
7
And gives examples of data columns you can use to get the most accurate predictions.
8
9
Download:Click Here
to download the Sample data file. Original size = 7050 x 21.
10
11
Identifying AttributesDemographic AttributesProduct AttributesSupport AttributesPayment AttributesPrediction Column
12
Anything we use to distinguish a customer from another. Only ONE required.

Examples for you --->
1. Name
2. Email
3. Customer ID
4. Phone
5. Account Number
Each user's demographic data.

Examples for you --->
1. Age
2. Location
3. Income
4. Family Size
5. Married/Single
Record of any activity the customer does using the product.

Examples for you --->
1. Type of Account (Checking/Saving)
2. Type of Card (Credit/Debit)
3. Last Transaction
4. Last Transaction Value
5. Loans issued
Records of how customers used support.

Examples for you --->
1. Number of times they called support.

2. Issue Type (Card, Account, Online Banking).

3. Issue Resolved?
4. Support Rating
Data of how users submit and handle their payments to you.

Examples for you --->
1. Last Date Credit Card debt was paid.
2. Total Interest Paid
3. Payment Method (Wire, Card, etc.)
4. Payment Channel (Online, In person, etc.)
Data of historical activity, that you would like to predict.

Examples for you --->
1. Churn
2. Interest Paid
3. Loan Defaulted
13
14
customerIDnamephoneNumbergenderSeniorCitizenPartnerDependentstenurePhoneServiceMultipleLines
InternetService
OnlineSecurityOnlineBackup
DeviceProtection
SteamingMoviestechSupport
#_of_support_tickets
Issue ResolvedContractPaperlessBillingPaymentMethodMonthlyCharges
TotalCharges
Churn
15
7590-VHVEGTina987-654-3210Female0YesNo1No
No phone service
DSLNoYesNoNoNo3YesMonth-to-monthYesElectronic check29.8529.85No
16
5575-GNVDEJack987-654-3211Male0NoNo34YesNoDSLYesNoYesNoNo10NoOne yearNoMailed check56.951889.5No
17
3668-QPYBKCharlie987-654-3212Male0NoNo2YesNoDSLYesYesNoNoNo15NoMonth-to-monthYesMailed check53.85108.15Yes
18
7795-CFOCWMax987-654-3213Male0NoNo45No
No phone service
DSLYesNoYesYesNo4YesOne yearNoBank transfer (automatic)42.31840.75No
19
9237-HQITUChristine987-654-3214Female0NoNo2YesNoFiber opticNoNoNoNoNo3YesMonth-to-monthYesElectronic check70.7151.65Yes
20
9305-CDSKCSarah987-654-3215Female0NoNo8YesYesFiber opticNoNoYesNoYes2YesMonth-to-monthYesElectronic check99.65820.5Yes
21
1452-KIOVKMichael987-654-3216Male0NoYes22YesYesFiber opticNoYesNoNoYes2NoMonth-to-monthYesCredit card (automatic)89.11949.4No
22
6713-OKOMCJenny987-654-3217Female0NoNo10No
No phone service
DSLYesNoNoNoNo15YesMonth-to-monthNoMailed check29.75301.9No
23
7892-POOKPAmy987-654-3218Female0YesNo28YesYesFiber opticNoNoYesYesYes10YesMonth-to-monthYesElectronic check104.83046.05Yes
24
6388-TABGUJohn987-654-3219Male0NoYes62YesNoDSLYesYesNoNoNo23NoOne yearNoBank transfer (automatic)56.153487.95No
25
9763-GRSKDEmily987-654-3220Female0YesYes13YesNoDSLYesNoNoNoNo0NoMonth-to-monthYesMailed check49.95587.45No
26
7469-LKBCIJackson987-654-3221Male0NoNo16YesNoNo
No internet service
No internet service
No internet serviceNo internet service
No internet service
1NoTwo yearNoCredit card (automatic)18.95326.8No
27
8091-TTVAXAileen987-654-3222Female0YesNo58YesYesFiber opticNoNoYesNoYes3YesOne yearNoCredit card (automatic)100.355681.1No
28
0280-XJGEXChristine987-654-3223Female0NoNo49YesYesFiber opticNoYesYesNoYes2YesMonth-to-monthYesBank transfer (automatic)103.75036.3Yes
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100