| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Energy (eV) | ||||||||||||||||||||||
2 | Sl. No. | Target | Start | End | Reference | DOI Link | |||||||||||||||||
3 | 1 | (CH_3)_2CO (acetone) | 50 | 10000 | AIP Advances 5 (2015) | https://doi.org/10.1063/1.4931631 | |||||||||||||||||
4 | 2 | (CH_3)_2SO (dimethyl sulphoxide) | 1 | 2000 | Mol. Phys. 113 (2015) 3883-3890 | https://doi.org/0.1080/00268976.2015.1075621 | |||||||||||||||||
5 | 3 | (CH_3CH_2)_2S (diethyl sulphide) | 1 | 2000 | Mol. Phys. 113 (2015) 3883-3890 | https://doi.org/0.1080/00268976.2015.1075621 | |||||||||||||||||
6 | 4 | (CH3CH2CH2)_2S (dipropyl sulphide) | 1 | 2000 | Mol. Phys. 113 (2015) 3883-3890 | https://doi.org/0.1080/00268976.2015.1075621 | |||||||||||||||||
7 | 5 | 1-C_3H_7Cl (1- chloropropane) | 12 | 5000 | Int. J. Mass Spectrom. 360 (2014) 39-44 | https://doi.org/10.1016/j.ijms.2013.12.019 | |||||||||||||||||
8 | 6 | 1-C_4H_9Cl (1- chlorobutane) | 12 | 5000 | Int. J. Mass Spectrom. 360 (2014) 39-44 | https://doi.org/10.1016/j.ijms.2013.12.019 | |||||||||||||||||
9 | 7 | Ag (Silver) | 8 | 2000 | Can. J. Phys. 91 (2013) 744-750 | https://doi.org/10.1139/cjp-2013-0174 | |||||||||||||||||
10 | 8 | AlBr_3 (Aluminium bromide) | 10.4 | 5000 | Mol. Phys. 116 (2017) 1208-1217 | https://doi.org/10.1080/00268976.2017.1416197 | |||||||||||||||||
11 | 9 | AlCl_3 (Aluminium chloride) | 12.01 | 5000 | Mol. Phys. 116 (2017) 1208-1217 | https://doi.org/10.1080/00268976.2017.1416197 | |||||||||||||||||
12 | 10 | AlF_3 (Aluminium fluoride) | 15.45 | 5000 | Mol. Phys. 116 (2017) 1208-1217 | https://doi.org/10.1080/00268976.2017.1416197 | |||||||||||||||||
13 | 11 | AlI_3 (Aluminium iodide) | 9.1 | 5000 | Mol. Phys. 116 (2017) 1208-1217 | https://doi.org/10.1080/00268976.2017.1416197 | |||||||||||||||||
14 | 12 | Ar_2 (Argon dimer) | 18 | 2000 | Mol. Phys. 111 (2013) 3047-3053 | https://doi.org/10.1080/00268976.2013.766369 | |||||||||||||||||
15 | 13 | B (Boron) | 9 | 2000 | Chin. J. Phys. 51 (2013) 1172-1183 | https://doi.org/10.6122/CJP.51.1172 | |||||||||||||||||
16 | 14 | BBr_3 (Boron tribromide) | 10.51 | 5000 | Mol. Phys. 116 (2017) 1208-1217 | https://doi.org/10.1080/00268976.2017.1416197 | |||||||||||||||||
17 | 15 | BCl_3 (Boron trichloride) | 11.6 | 5000 | Mol. Phys. 116 (2017) 1208-1217 | https://doi.org/10.1080/00268976.2017.1416197 | |||||||||||||||||
18 | 16 | Be (Beryllium) | 10 | 2000 | Chin. J. Phys. 51 (2013) 1172-1183 | https://doi.org/10.6122/CJP.51.1172 | |||||||||||||||||
19 | 17 | Be_10W (Beryllium-tungsten clusters) | 0.1 | 10000 | Phys. Plasmas 24 (2017) 83514 | https://doi.org/10.1063/1.4997611 | |||||||||||||||||
20 | 18 | Be_11W (Beryllium-tungsten clusters) | 0.1 | 10000 | Phys. Plasmas 24 (2017) 83514 | https://doi.org/10.1063/1.4997611 | |||||||||||||||||
21 | 19 | Be_12W (Beryllium-tungsten clusters) | 0.1 | 10000 | Phys. Plasmas 24 (2017) 83514 | https://doi.org/10.1063/1.4997611 | |||||||||||||||||
22 | 20 | Be_2W (Beryllium-tungsten clusters) | 0.1 | 10000 | Phys. Plasmas 24 (2017) 83514 | https://doi.org/10.1063/1.4997611 | |||||||||||||||||
23 | 21 | Be_3W (Beryllium-tungsten clusters) | 0.1 | 10000 | Phys. Plasmas 24 (2017) 83514 | https://doi.org/10.1063/1.4997611 | |||||||||||||||||
24 | 22 | Be_4W (Beryllium-tungsten clusters) | 0.1 | 10000 | Phys. Plasmas 24 (2017) 83514 | https://doi.org/10.1063/1.4997611 | |||||||||||||||||
25 | 23 | Be_5W (Beryllium-tungsten clusters) | 0.1 | 10000 | Phys. Plasmas 24 (2017) 83514 | https://doi.org/10.1063/1.4997611 | |||||||||||||||||
26 | 24 | Be_6W (Beryllium-tungsten clusters) | 0.1 | 10000 | Phys. Plasmas 24 (2017) 83514 | https://doi.org/10.1063/1.4997611 | |||||||||||||||||
27 | 25 | Be_7W (Beryllium-tungsten clusters) | 0.1 | 10000 | Phys. Plasmas 24 (2017) 83514 | https://doi.org/10.1063/1.4997611 | |||||||||||||||||
28 | 26 | Be_8W (Beryllium-tungsten clusters) | 0.1 | 10000 | Phys. Plasmas 24 (2017) 83514 | https://doi.org/10.1063/1.4997611 | |||||||||||||||||
29 | 27 | Be_9W (Beryllium-tungsten clusters) | 0.1 | 10000 | Phys. Plasmas 24 (2017) 83514 | https://doi.org/10.1063/1.4997611 | |||||||||||||||||
30 | 28 | BeW (Beryllium-tungsten clusters) | 0.1 | 10000 | Phys. Plasmas 24 (2017) 83514 | https://doi.org/10.1063/1.4997611 | |||||||||||||||||
31 | 29 | BF_3 (Boron trifluoride) | 15.7 | 5000 | Mol. Phys. 116 (2017) 1208-1217 | https://doi.org/10.1080/00268976.2017.1416197 | |||||||||||||||||
32 | 30 | BI_3 (Boron triiodide) | 9.25 | 5000 | Mol. Phys. 116 (2017) 1208-1217 | https://doi.org/10.1080/00268976.2017.1416197 | |||||||||||||||||
33 | 31 | Br (Bromine) | 10 | 5000 | J. Phys. B: At. Mol. Opt. Phys 53 (2020) 145101 | https://doi.org/10.1088/1361-6455/ab8e26 | |||||||||||||||||
34 | 32 | C_10H_22Cl_2N_2O_4Pt (Satraplatin) | 12 | 5000 | Mol. Phys. 114 (2016) 3104-3111 | https://doi.org/10.1080/00268976.2016.1219408 | |||||||||||||||||
35 | 33 | C_10H_8 (Naphthalene) | 8.14 | 5000 | J. Chem. Phys. 150 (2019) 64313 | https://doi.org/10.1063/1.5081841 | |||||||||||||||||
36 | 34 | C_2 (Dicarbon) | 14 | 2000 | Mol. Phys. 111 (2013) 269-275 | https://doi.org/10.1080/00268976.2012.718807 | |||||||||||||||||
37 | 35 | C_2 H_6 S (dimethyl sulphide) | 1 | 2000 | Mol. Phys. 113 (2015) 3883-3890 | https://doi.org/0.1080/00268976.2015.1075621 | |||||||||||||||||
38 | 36 | C_2Cl_6 (Hexachloroethane) | 12 | 5000 | Int. J. Mass Spectrom. 373 (2014) 34-38 | https://doi.org/10.1016/j.ijms.2014.08.003 | |||||||||||||||||
39 | 37 | C_2H_2Cl_4 (Tetrachloroethane) | 12 | 5000 | Int. J. Mass Spectrom. 373 (2014) 34-38 | https://doi.org/10.1016/j.ijms.2014.08.003 | |||||||||||||||||
40 | 38 | C_2H_3Cl_3 (1,1,1-Trichloroethane) | 12 | 5000 | Int. J. Mass Spectrom. 373 (2014) 34-38 | https://doi.org/10.1016/j.ijms.2014.08.003 | |||||||||||||||||
41 | 39 | C_2H_4Cl_2 (1,2-dichloroethane) | 12 | 5000 | Int. J. Mass Spectrom. 373 (2014) 34-38 | https://doi.org/10.1016/j.ijms.2014.08.003 | |||||||||||||||||
42 | 40 | C_2H_5CHO (Propionaldehyde ) | 12 | 2000 | J. Chem. Phys 141 (2014) 54303 | https://doi.org/10.1063/1.4891472 | |||||||||||||||||
43 | 41 | C_2H_5Cl (Chloroethane) | 12 | 5000 | Int. J. Mass Spectrom. 360 (2014) 39-44 | https://doi.org/10.1016/j.ijms.2013.12.019 | |||||||||||||||||
44 | 42 | C_2H_5CN (Ethyl cyanide ) | 12 | 5000 | J. Electron Spectrosc. Relat. Phenom. 205 (2015) 74–82 | https://doi.org/10.1016/j.elspec.2015.08.013 | |||||||||||||||||
45 | 43 | C_2H_5COCH_3 (2-Butanone ) | 12 | 2000 | J. Chem. Phys 141 (2014) 54303 | https://doi.org/10.1063/1.4891472 | |||||||||||||||||
46 | 44 | C_2H_5NO (N-methylformamide) | 11 | 2000 | Mol. Phys. 112 (2014) 1201-1209 | https://doi.org/10.1080/00268976.2013.839841 | |||||||||||||||||
47 | 45 | C_2H_8N_2O_3Pt (Nedaplatin) | 10 | 5000 | Mol. Phys. 114 (2016) 3104-3111 | https://doi.org/10.1080/00268976.2016.1219408 | |||||||||||||||||
48 | 46 | C_2H-6O (dimethyl ether) | 10.025 | 5000 | Int. J. Mass Spectrom. 409 (2016) 45299 | https://doi.org/10.1016/j.ijms.2016.09.002 | |||||||||||||||||
49 | 47 | C_2HCl_5 (Pentachloroethane) | 12 | 5000 | Int. J. Mass Spectrom. 373 (2014) 34-38 | https://doi.org/10.1016/j.ijms.2014.08.003 | |||||||||||||||||
50 | 48 | C_3 (Triatomic-carbon) | 14 | 2000 | Mol. Phys. 111 (2013) 269-275 | https://doi.org/10.1080/00268976.2012.718807 | |||||||||||||||||
51 | 49 | C_3F_6O (Hexafluoroacetone) | 12.051 | 5000 | J. Phys. B: At. Mol. Opt. Phys. 53 (2019) 145101 | https://doi.org/10.1088/1361-6455/ab8e26 | |||||||||||||||||
52 | 50 | C_3F_6O (Hexafluoropropylene oxide) | 12.051 | 5000 | J. Phys. B: At. Mol. Opt. Phys 53 (2020) 145101 | https://doi.org/10.1088/1361-6455/ab8e26 | |||||||||||||||||
53 | 51 | C_3H_6 (Cyclopropane ) | 12 | 2000 | J. Chem. Phys 141 (2014) 54303 | https://doi.org/10.1063/1.4891472 | |||||||||||||||||
54 | 52 | C_3H_6 (Propene) | 0.1 | 5000 | J. Appl. Phys. 124 (2018) 34901 | https://doi.org/10.1063/1.5032135 | |||||||||||||||||
55 | 53 | C_3H_7CHO (Butyraldehyde ) | 12 | 2000 | J. Chem. Phys 141 (2014) 54303 | https://doi.org/10.1063/1.4891472 | |||||||||||||||||
56 | 54 | C_3H_7CN (n-Propyl cyanide ) | 12 | 5000 | J. Electron Spectrosc. Relat. Phenom. 205 (2015) 74–82 | https://doi.org/10.1016/j.elspec.2015.08.013 | |||||||||||||||||
57 | 55 | C_3H_7COCH_3 (2-Pentanone) | 12 | 2000 | J. Chem. Phys 141 (2014) 54303 | https://doi.org/10.1063/1.4891472 | |||||||||||||||||
58 | 56 | C_3H_9N (n-propylamine) | 10 | 2000 | Mol. Phys. 112 (2014) 1201-1209 | https://doi.org/10.1080/00268976.2013.839841 | |||||||||||||||||
59 | 57 | C_3HN (cyanoacetylene) | 0.5 | 5000 | J. Phys. B: At. Mol. Opt. Phys. 49 (2016) | https://doi.org/10.1088/0953-4075/49/22/225202 | |||||||||||||||||
60 | 58 | C_4 H_10 S_2 (di-ethyl disulphide ) | 1 | 2000 | Mol. Phys. 113 (2015) 3883-3890 | https://doi.org/0.1080/00268976.2015.1075621 | |||||||||||||||||
61 | 59 | C_4F_7N (Heptafluorobutyronitrile) | 14.32 | 5000 | J. Phys. B: At. Mol. Opt. Phys. 53 (2019) 145101 | https://doi.org/10.1088/1361-6455/ab8e26 | |||||||||||||||||
62 | 60 | C_4F_7N (Heptafluorobutyronitrile) | 14.32 | 5000 | J. Phys. B: At. Mol. Opt. Phys 53 (2020) 145101 | https://doi.org/10.1088/1361-6455/ab8e26 | |||||||||||||||||
63 | 61 | C_4F_8O (Octafluorotetrahydrofuran) | 12.837 | 5000 | J. Phys. B: At. Mol. Opt. Phys. 53 (2019) 145101 | https://doi.org/10.1088/1361-6455/ab8e26 | |||||||||||||||||
64 | 62 | C_4F_8O (Octafluorotetrahydrofuran) | 12.837 | 5000 | J. Phys. B: At. Mol. Opt. Phys 53 (2020) 145101 | https://doi.org/10.1088/1361-6455/ab8e26 | |||||||||||||||||
65 | 63 | C_4H_10O (1-Butanol) | 9.99 | Int. J. Mass Spectrom. 431 (2018) 37-42 | https://doi.org/10.1016/j.ijms.2018.06.001 | ||||||||||||||||||
66 | 64 | C_4H_10O (2-Butanol) | 9.88 | 5000 | Int. J. Mass Spectrom. 431 (2018) 37-42 | https://doi.org/10.1016/j.ijms.2018.06.001 | |||||||||||||||||
67 | 65 | C_4H_10O (2-Methyl-1-propanol) | 10.02 | Int. J. Mass Spectrom. 431 (2018) 37-42 | https://doi.org/10.1016/j.ijms.2018.06.001 | ||||||||||||||||||
68 | 66 | C_4H_10O (2-Methyl-2-propanol) | 9.9 | 5000 | Int. J. Mass Spectrom. 431 (2018) 37-42 | https://doi.org/10.1016/j.ijms.2018.06.001 | |||||||||||||||||
69 | 67 | C_4H_10O (Diethyl ether) | 9.51 | 5000 | Int. J. Mass Spectrom. 409 (2016) 45299 | https://doi.org/10.1016/j.ijms.2016.09.002 | |||||||||||||||||
70 | 68 | C_4H_10OS (di-ethyl sulphoxide) | 1 | 2000 | Mol. Phys. 113 (2015) 3883-3890 | https://doi.org/0.1080/00268976.2015.1075621 | |||||||||||||||||
71 | 69 | C_4H_4N_2 (Pyrimidine) | 10 | 2000 | Mol. Phys. 112 (2014) 1201-1209 | https://doi.org/10.1080/00268976.2013.839841 | |||||||||||||||||
72 | 70 | C_4H_4S (Thiophene) | 9.29 | 5000 | J. Chem. Phys. 150 (2019) 64313 | https://doi.org/10.1063/1.5081841 | |||||||||||||||||
73 | 71 | C_4H_5N (Pyrrole and its isomers) | IP | 5000 | Eur. Phys. J. D 74 (2020) 198 | https://doi.org/10.1140/epjd/e2020-10283-4 | |||||||||||||||||
74 | 72 | C_4H_5N (Pyrrole) | 8.209 | 5000 | J. Chem. Phys. 150 (2019) 64313 | https://doi.org/10.1063/1.5081841 | |||||||||||||||||
75 | 73 | C_4H_6 (1-Butyne) | 11 | 5000 | J. Phys. Chem. A 127 (2023) 5414-5423 | https://doi.org/10.1021/acs.jpca.3c01756 | |||||||||||||||||
76 | 74 | C_4H_6 (1-methylcyclopropene) | 10 | 5000 | J. Phys. Chem. A 127 (2023) 5414-5423 | https://doi.org/10.1021/acs.jpca.3c01756 | |||||||||||||||||
77 | 75 | C_4H_6 (1,2-Butadiene) | 10 | 5000 | J. Phys. Chem. A 127 (2023) 5414-5423 | https://doi.org/10.1021/acs.jpca.3c01756 | |||||||||||||||||
78 | 76 | C_4H_6 (Bicyclo[1.1.0]butane) | 9 | 5000 | J. Phys. Chem. A 127 (2023) 5414-5423 | https://doi.org/10.1021/acs.jpca.3c01756 | |||||||||||||||||
79 | 77 | C_4H_6 (Cyclobutene) | 10 | 5000 | J. Phys. Chem. A 127 (2023) 5414-5423 | https://doi.org/10.1021/acs.jpca.3c01756 | |||||||||||||||||
80 | 78 | C_4H_6 (Methylenecyclopropane) | 10 | 5000 | J. Phys. Chem. A 127 (2023) 5414-5423 | https://doi.org/10.1021/acs.jpca.3c01756 | |||||||||||||||||
81 | 79 | C_4H_9CHO (Pentanaldehyde ) | 12 | 2000 | J. Chem. Phys 141 (2014) 54303 | https://doi.org/10.1063/1.4891472 | |||||||||||||||||
82 | 80 | C_4H_9CN (n-Butyl cyanide ) | 12 | 5000 | J. Electron Spectrosc. Relat. Phenom. 205 (2015) 74–82 | https://doi.org/10.1016/j.elspec.2015.08.013 | |||||||||||||||||
83 | 81 | C_5F_10O (Perfluorovaleryl fluoride) | 12.016 | 5000 | J. Phys. B: At. Mol. Opt. Phys. 53 (2019) 145101 | https://doi.org/10.1088/1361-6455/ab8e26 | |||||||||||||||||
84 | 82 | C_5F_10O (Perfluorovaleryl fluoride) | 12.016 | 5000 | J. Phys. B: At. Mol. Opt. Phys 53 (2020) 145101 | https://doi.org/10.1088/1361-6455/ab8e26 | |||||||||||||||||
85 | 83 | C_5H_12O (1-Pentanol) | 10 | 5000 | Int. J. Mass Spectrom. 431 (2018) 37-42 | https://doi.org/10.1016/j.ijms.2018.06.001 | |||||||||||||||||
86 | 84 | C_5H_12O (2-Methylbutan-1-ol) | 9.86 | 5000 | Int. J. Mass Spectrom. 431 (2018) 37-42 | https://doi.org/10.1016/j.ijms.2018.06.001 | |||||||||||||||||
87 | 85 | C_5H_12O (2-Pentanol) | 9.78 | Int. J. Mass Spectrom. 431 (2018) 37-42 | https://doi.org/10.1016/j.ijms.2018.06.001 | ||||||||||||||||||
88 | 86 | C_5H_12O (3-Methylbutan-2-ol) | 9.88 | 5000 | Int. J. Mass Spectrom. 431 (2018) 37-42 | https://doi.org/10.1016/j.ijms.2018.06.001 | |||||||||||||||||
89 | 87 | C_5H_12O (3-Pentanol) | 9.78 | 5000 | Int. J. Mass Spectrom. 431 (2018) 37-42 | https://doi.org/10.1016/j.ijms.2018.06.001 | |||||||||||||||||
90 | 88 | C_5H_5N (Pyridine) | 10 | 2000 | Mol. Phys. 112 (2014) 1201-1209 | https://doi.org/10.1080/00268976.2013.839841 | |||||||||||||||||
91 | 89 | C_5H_5N (Pyridine) | 9.6 | 5000 | J. Chem. Phys. 150 (2019) 64313 | https://doi.org/10.1063/1.5081841 | |||||||||||||||||
92 | 90 | C_5H_8 ((E)-1,3-pentadiene) | 9 | 5000 | J. Phys. Chem. A 127 (2023) 5414-5423 | https://doi.org/10.1021/acs.jpca.3c01756 | |||||||||||||||||
93 | 91 | C_5H_8 ((Z)-1,3-pentadiene) | 9 | 5000 | J. Phys. Chem. A 127 (2023) 5414-5423 | https://doi.org/10.1021/acs.jpca.3c01756 | |||||||||||||||||
94 | 92 | C_5H_8 (1-pentyne) | 11 | 5000 | J. Phys. Chem. A 127 (2023) 5414-5423 | https://doi.org/10.1021/acs.jpca.3c01756 | |||||||||||||||||
95 | 93 | C_5H_8 (1,2-pentadiene) | 10 | 5000 | J. Phys. Chem. A 127 (2023) 5414-5423 | https://doi.org/10.1021/acs.jpca.3c01756 | |||||||||||||||||
96 | 94 | C_5H_8 (1,4-pentadiene) | 10 | 5000 | J. Phys. Chem. A 127 (2023) 5414-5423 | https://doi.org/10.1021/acs.jpca.3c01756 | |||||||||||||||||
97 | 95 | C_5H_8 (2,3-pentadiene) | 10 | 5000 | J. Phys. Chem. A 127 (2023) 5414-5423 | https://doi.org/10.1021/acs.jpca.3c01756 | |||||||||||||||||
98 | 96 | C_5H_8 (3-methyl-1,2-butadiene) | 9 | 5000 | J. Phys. Chem. A 127 (2023) 5414-5423 | https://doi.org/10.1021/acs.jpca.3c01756 | |||||||||||||||||
99 | 97 | C_5H_8 (Bicyclo[1.1.1]pentane) | 10 | 5000 | J. Phys. Chem. A 127 (2023) 5414-5423 | https://doi.org/10.1021/acs.jpca.3c01756 | |||||||||||||||||
100 | 98 | C_5H_8 (Bicyclo[2.1.0]pentane) | 9 | 5000 | J. Phys. Chem. A 127 (2023) 5414-5423 | https://doi.org/10.1021/acs.jpca.3c01756 | |||||||||||||||||