A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

1 | S | |||||||||||||||||||||||

2 | Mathematics Grade 7 | |||||||||||||||||||||||

3 | Planning Grid (Gantt Chart) | |||||||||||||||||||||||

4 | Links to Materials | Sequence instruction by academic year quarter. | ||||||||||||||||||||||

5 | Click colored cells to download: Worksheet Series / Activities / Related Videos/ Links | Indicate when you are introducing a skill by flagging the appropriate quarter green. | ||||||||||||||||||||||

6 | Worksheet #1 | 📽 Related Video | Worksheet #2 | Related Link | Worksheet #3 | Worksheet #4 | Flag the skill red when students will practice the skill on independent assignments (homework). | |||||||||||||||||

7 | Same background color indicates that these resources are related. | |||||||||||||||||||||||

8 | Blue flag: priority skill -to be assessed on Progress Monitoring Tests | MCAS Grade 7 Math Reference Sheet | Instructional level of skill: flag green | Independent level of skill: flag red. | ||||||||||||||||||||

9 | Q1 | Q2 | Q3 | Q4 | ||||||||||||||||||||

10 | CC # | Foundational Skills | Sept-Oct | Nov-Jan | Feb-Mar | Apr -Jun | ||||||||||||||||||

11 | Precursor | Know Core whole number multiplication and ÷ facts x 2,5,9,1,10 and associated divisibility rules Become functionally fluent using Multiplication and Division Facts for the Whole-to-Part Visual Learner. | x/÷ 2, 5,10 | x/÷ 2, 5,10 | x/÷ 2, 5,10,9,1 | |||||||||||||||||||

12 | Click for book link. | x chart =fractions | Ladder Chart Blanks | 📽 Woodin Ladder Chart Instructional Video | Color Coded Ladder Chart with Divisibility Rule References | x9, x1 | ||||||||||||||||||

13 | % Benchmark Facts | 📽 % Benchmark Facts Video | Ball Toss x Procedure | Semantic-based Distributive property | x4 and x7 facts using Distributive property | |||||||||||||||||||

14 | 6.EE1 | Write and evaluate numerical expressions involving whole-number exponents. | ||||||||||||||||||||||

15 | Order of Ops. with exponents | |||||||||||||||||||||||

16 | 6.EE2 | Write, read, and evaluate expressions in which letters stand for numbers. | ||||||||||||||||||||||

17 | Commute Combine Evaluate Template | |||||||||||||||||||||||

18 | 📽 Commute Combine Evaluate | |||||||||||||||||||||||

19 | 6.EE2a | Write expressions that record operations with numbers and with letters standing for numbers. (e.g., express the calculation “Subtract y from 5” as 5 – y.) | ||||||||||||||||||||||

20 | ||||||||||||||||||||||||

21 | 6.EE2b | Identify parts of an expression using terminology: (sum, term, product, factor, quotient, coefficient). | ||||||||||||||||||||||

22 | Algebra vocabulary and key words | Intro Algegra Vocab. Quiz | ||||||||||||||||||||||

23 | ||||||||||||||||||||||||

24 | Q1 | Q2 | Q3 | Q4 | ||||||||||||||||||||

25 | CC # | Expressions and Equations | Sept-Oct | Nov-Jan | Feb-Mar | Apr -Jun | ||||||||||||||||||

26 | 7.EE1 | Apply properties of operations to add, subtract, factor, and expand linear expressions with rational coefficients. For example, 4x + 2 = 2(2x + 1) and -3(x - 5/3) = -3x + 5. | ||||||||||||||||||||||

27 | Precursor skill: Semantic-based Distributive property | |||||||||||||||||||||||

28 | ||||||||||||||||||||||||

29 | 7.EE2 | Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, a + 0.05a = 1.05a means that “increase by 5%” is the same as “multiply by 1.05.” A shirt at a clothing store is on sale for 20% off the regular price, “p”. The discount can be expressed as 0.2p. The new price for the shirt can be expressed as p – 0.2p or 0.8p. | ||||||||||||||||||||||

30 | 📽 Fraction Video | 📽 Fraction Video #2 | 📽 Regroup Mixed # Video | |||||||||||||||||||||

31 | Precursor skill | Solve simple equations (one variable) | ||||||||||||||||||||||

32 | Best Equation Starters | 3 Equations from Reach Diagram | 3 Equations from a linear diagram | 3 Equations from a matrix | 3 and 4 Term Related Equations Reach Diagram | 3 and 4 Term Related Equations with Reach Diagram+ Stool and Practice Evaluation | ||||||||||||||||||

33 | 📽 Equation Video | |||||||||||||||||||||||

34 | 7.EE.4 | Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. | ||||||||||||||||||||||

35 | Translate word prolems into equations | Write equation and graph template | Solve Increasingly difficult Word Problems | |||||||||||||||||||||

36 | 7.EE.4a | Solve word problems leading to equations of the form px + q = r and p(x ÷ q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width? | ||||||||||||||||||||||

37 | ax and ax+b Word Problems | Solve for missing Dimensions within 2d and 3d figures | ||||||||||||||||||||||

38 | 7.EE.4b | Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid $50 per week plus $3 per sale. This week you want your pay to be at least $100. Write an inequality for the number of sales you need to make, and describe the solutions. | ||||||||||||||||||||||

39 | ||||||||||||||||||||||||

40 | 7.EE.4c | Extend analysis of patterns to include analyzing, extending, and determining an expression for simple arithmetic and geometric sequences (e.g., compounding, increasing area), using tables, graphs, words, and expressions. | ||||||||||||||||||||||

41 | ||||||||||||||||||||||||

42 | ||||||||||||||||||||||||

43 | Q1 | Q2 | Q3 | Q4 | ||||||||||||||||||||

44 | Ratios and Proportional Relationships | Sept-Oct | Nov-Jan | Feb-Mar | Apr -Jun | |||||||||||||||||||

45 | 7.RP.1 | Compute unit rates associated with ratios of fractions, including ratios of lengths, areas, and other quantities measured in like or different units.For example, if a person walks ½ mile in each ¼ hour, compute the unit rate as the complex fraction ½/¼ miles per hour, equivalently 2 miles per hour. | ||||||||||||||||||||||

46 | Unit Rate introduction Worksheet series | Unit Rates with Ratios of fractions | Bubble Race Convert feet per second to mils per 1 hour | |||||||||||||||||||||

47 | 7.RP.2a | Recognize and represent proportional relationships between quantities. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table, or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. | ||||||||||||||||||||||

48 | Test for Proportionality | |||||||||||||||||||||||

49 | 7.RP.2b | Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. | ||||||||||||||||||||||

50 | Cop From Tables | COP from Graph | ||||||||||||||||||||||

51 | 7.RP.2c | Represent proportional relationships by equations. Also 6rp3. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn. | ||||||||||||||||||||||

52 | Graph Unit Rates Level 1 | Graph Equivalent Rates and Ratios | ||||||||||||||||||||||

53 | 📽 Graph = Rates Precursor Activity video | 📽 Companion Video of Graphing Rates | Ladder Fact Functions | Graph fractions to illustrate slope | ||||||||||||||||||||

54 | 6.NS.6c | Plot points on a number line and all 4 quadrants | ||||||||||||||||||||||

55 | Plot Integers on Number Lines | Swoosh Game Quadrant I | Battleship Game | |||||||||||||||||||||

56 | 7.RP.2d | Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r ) where r is the unit rate. | ||||||||||||||||||||||

57 | Ladder Fact Functions | Graph fractions to illustrate slope | Define the slope of a line using arbitrary objects. | |||||||||||||||||||||

58 | 7.G.1 | Solve problems involving scale drawings of geometric figures, such as computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale. | ||||||||||||||||||||||

59 | Indirect Measurement Shadowmaster Activity | 📽 Video Indirect Measurement with the Shadowmaster | Proportions relating to finding corresponding sides of similar figures | Fenway Park Distances | Missing dimensions using a scale photo. Find a required diameter from a given circumference. | |||||||||||||||||||

60 | ||||||||||||||||||||||||

61 | Percents | Sept-Oct | Nov-Jan | Feb-Mar | Apr -Jun | |||||||||||||||||||

62 | Precursor | Understand benchmark percents as part of a 100% whole. | ||||||||||||||||||||||

63 | % Benchmark Facts | % Estimation Trees | ||||||||||||||||||||||

64 | 6.EE.7 | Solve problems by writing and solving equations of the form x + p = q and px = q (all positive values) | ||||||||||||||||||||||

65 | ||||||||||||||||||||||||

66 | 6.RP3.c | Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity) | ||||||||||||||||||||||

67 | 1.2 Find the part % word problems | Find the Part 2.5 | Turkey Part % | % Areas | ||||||||||||||||||||

68 | 7.RP.3 | Use proportional relationships to solve multi-step ratio, rate, and percent problems. Examples: simple interest, tax, price increases and discounts, gratuities and commissions, fees, percent increase and decrease, percent error. | ||||||||||||||||||||||

69 | Baseball 2018 Texas Percents 3-types | 3 Types of Related % Problems | ||||||||||||||||||||||

70 | ||||||||||||||||||||||||

71 | ||||||||||||||||||||||||

72 | Q1 | Q2 | Q3 | Q4 | ||||||||||||||||||||

73 | Integers and Number Lines | Sept-Oct | Nov-Jan | Feb-Mar | Apr -Jun | |||||||||||||||||||

74 | Understand integers as nouns, defined by + hot or -cold adjectives. (-3 = 3 cold things.) | |||||||||||||||||||||||

75 | ||||||||||||||||||||||||

76 | ||||||||||||||||||||||||

77 | 7.NS.1 | Apply and extend previous understandings of addition and subtraction to add and subtract integers and other rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. | ||||||||||||||||||||||

78 | Combine Integers | |||||||||||||||||||||||

79 | 📽 Combine Integers Movie | |||||||||||||||||||||||

80 | 7.NS.1a | Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged. A hydrogen atom has zero charge because its two constituents are oppositely charged; If you open a new bank account with a deposit of $30 and then withdraw $30, you are left with a $0 balance. | ||||||||||||||||||||||

81 | ||||||||||||||||||||||||

82 | 7.NS.1b | Understand p + q as the number located a distance |q| from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. | ||||||||||||||||||||||

83 | ||||||||||||||||||||||||

84 | 7.NS.1c | Understand subtraction of rational numbers as adding the additive inverse, p – q = p + (–q). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. | ||||||||||||||||||||||

85 | ||||||||||||||||||||||||

86 | 7.NS.2a | Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (–1)(–1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. | ||||||||||||||||||||||

87 | ||||||||||||||||||||||||

88 | 7.NS.2b | Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then –(p/q) = (–p)/q = p/(–q). Interpret quotients of rational numbers by describing real-world contexts. | ||||||||||||||||||||||

89 | ||||||||||||||||||||||||

90 | ||||||||||||||||||||||||

91 | Q1 | Q2 | Q3 | Q4 | ||||||||||||||||||||

92 | Computation With Rational Numbers | Sept-Oct | Nov-Jan | Feb-Mar | Apr -Jun | |||||||||||||||||||

93 | 5.NF.1 | Add and subtract fractions with unlike denominators (including mixed numbers). | ||||||||||||||||||||||

94 | 📽 Fraction Video | 📽 Fraction Video #2 | 📽 Regroup Mixed # Video | Type 1 2 3 fraction addition flow chart | 📽 Type 1 2 3 Flow chart video | |||||||||||||||||||

95 | 7.NS.1d | Apply properties of operations as strategies to add and subtract rational numbers. | ||||||||||||||||||||||

96 | ||||||||||||||||||||||||

97 | 7.NS.2 | Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. | ||||||||||||||||||||||

98 | ||||||||||||||||||||||||

99 | 7.NS.2c | Apply properties of operations as strategies to multiply and divide rational numbers. | ||||||||||||||||||||||

100 |

Loading...