A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | S | |||||||||||||||||||||||
2 | Mathematics Grade 7 | |||||||||||||||||||||||
3 | Planning Grid (Gantt Chart) | |||||||||||||||||||||||
4 | Links to Materials | Sequence instruction by academic year quarter. | ||||||||||||||||||||||
5 | Click colored cells to download: Worksheet Series / Activities / Related Videos/ Links | Indicate when you are introducing a skill by flagging the appropriate quarter green. | ||||||||||||||||||||||
6 | Worksheet #1 | π½ Related Video | Worksheet #2 | Related Link | Worksheet #3 | Worksheet #4 | Flag the skill red when students will practice the skill on independent assignments (homework). | |||||||||||||||||
7 | Same background color indicates that these resources are related. | |||||||||||||||||||||||
8 | Blue flag: priority skill -to be assessed on Progress Monitoring Tests | MCAS Grade 7 Math Reference Sheet | G7 Graphic Organizers for Grade 7 | Instructional level of skill: flag green | Independent level of skill: flag red. | |||||||||||||||||||
9 | Q1 | Q2 | Q3 | Q4 | ||||||||||||||||||||
10 | CC # | Foundational Skills | Sept-Oct | Nov-Jan | Feb-Mar | Apr -Jun | ||||||||||||||||||
11 | Precursor | Know Core whole number multiplication and Γ· facts x 2,5,9,1,10 and associated divisibility rules Become functionally fluent using Multiplication and Division Facts for the Whole-to-Part Visual Learner. | x/Γ· 2, 5,10 | x/Γ· 2, 5,10 | x/Γ· 2, 5,10,9,1 | |||||||||||||||||||
12 | Click for book link. | Expand and Simplify Fractions While Practicing Fact Families and the Multiplication Table Area Model | Ladder Chart Blanks | π½ Woodin Ladder Chart Instructional Video | Color Coded Ladder Chart with Divisibility Rule References | x9, x1 | ||||||||||||||||||
13 | %Benchmark Multiplication Facts | Ball Toss x Procedure | Semantic-based Distributive property | x4 and x7 facts using Distributive property | ||||||||||||||||||||
14 | π½ Fraction Video | π½ Fraction Video #2 | π½ Regroup Mixed # Video | |||||||||||||||||||||
15 | Solve Various Word Problems Using Graphic Organizer Templates | β’ % Relative Products Drive x Facts | Shopping Computation Templates using Unit Rates | Holiday Shopping Spend 1000 Game: Manual and Electronic Spreadsheet | ||||||||||||||||||||
16 | 6.EE1 | Write and evaluate numerical expressions involving whole-number exponents. | ||||||||||||||||||||||
17 | Exponents Slides Presentation | Order of Ops. with exponents | ||||||||||||||||||||||
18 | 6.EE2 | Write, read, and evaluate expressions in which letters stand for numbers. | ||||||||||||||||||||||
19 | Commute Combine Evaluate Template | |||||||||||||||||||||||
20 | π½ Commute Combine Evaluate | |||||||||||||||||||||||
21 | 6.EE2a | Write expressions that record operations with numbers and with letters standing for numbers. (e.g., express the calculation βSubtract y from 5β as 5 β y.) | ||||||||||||||||||||||
22 | ||||||||||||||||||||||||
23 | 6.EE2b | Identify parts of an expression using terminology: (sum, term, product, factor, quotient, coefficient). | ||||||||||||||||||||||
24 | Algebra vocabulary and key words | Intro Algegra Vocab. Quiz | ||||||||||||||||||||||
25 | ||||||||||||||||||||||||
26 | Q1 | Q2 | Q3 | Q4 | ||||||||||||||||||||
27 | CC # | Expressions and Equations | Sept-Oct | Nov-Jan | Feb-Mar | Apr -Jun | ||||||||||||||||||
28 | 7.EE1 | Apply properties of operations to add, subtract, factor, and expand linear expressions with rational coefficients. For example, 4x + 2 = 2(2x + 1) and -3(x - 5/3) = -3x + 5. | ||||||||||||||||||||||
29 | Precursor skill: Semantic-based Distributive property | x4 and x7 facts using Distributive property | ||||||||||||||||||||||
30 | ||||||||||||||||||||||||
31 | 7.EE2 | Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, a + 0.05a = 1.05a means that βincrease by 5%β is the same as βmultiply by 1.05.β A shirt at a clothing store is on sale for 20% off the regular price, βpβ. The discount can be expressed as 0.2p. The new price for the shirt can be expressed as p β 0.2p or 0.8p. | ||||||||||||||||||||||
32 | ||||||||||||||||||||||||
33 | Precursor skill | Solve simple equations (one variable) | ||||||||||||||||||||||
34 | Best Equation Starters | 3 Equations from Reach Diagram | 3 Equations from a linear diagram | 3 Equations from a matrix | 3 and 4 Term Related Equations Reach Diagram | 3 and 4 Term Related Equations with Reach Diagram+ Stool and Practice Evaluation | ||||||||||||||||||
35 | π½ Equation Video | Equations and Related Diagrams | 3 Graduated Cyl. Equations | Solve ax=b Equations | Solve Equations involving Decimal Values with Box the Dollar Strategy | Solve all 4 basic equation types using inverse equations | ||||||||||||||||||
36 | 7.EE.4 | Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. | ||||||||||||||||||||||
37 | Translate word problems into equations | Word Problems to x+q=r Linear Diagrams to Equations | ||||||||||||||||||||||
38 | 7.EE.4a | Solve word problems leading to equations of the form px + q = r and p(x Γ· q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width? | ||||||||||||||||||||||
39 | ax and ax+b Word Problems | Solve for missing Dimensions within 2d and 3d figures | Solve Increasingly difficult Word Problems | |||||||||||||||||||||
40 | 7.EE.4b | Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid $50 per week plus $3 per sale. This week you want your pay to be at least $100. Write an inequality for the number of sales you need to make, and describe the solutions. | ||||||||||||||||||||||
41 | ||||||||||||||||||||||||
42 | 7.EE.4c | Extend analysis of patterns to include analyzing, extending, and determining an expression for simple arithmetic and geometric sequences (e.g., compounding, increasing area), using tables, graphs, words, and expressions. | ||||||||||||||||||||||
43 | ||||||||||||||||||||||||
44 | ||||||||||||||||||||||||
45 | Q1 | Q2 | Q3 | Q4 | ||||||||||||||||||||
46 | Ratios and Proportional Relationships | Sept-Oct | Nov-Jan | Feb-Mar | Apr -Jun | |||||||||||||||||||
47 | 7.RP.1 | Compute unit rates associated with ratios of fractions, including ratios of lengths, areas, and other quantities measured in like or different units.For example, if a person walks Β½ mile in each ΒΌ hour, compute the unit rate as the complex fraction Β½/ΒΌ miles per hour, equivalently 2 miles per hour. | ||||||||||||||||||||||
48 | Unit Rate introduction Worksheet series | Unit Rates with Ratios of fractions | Bubble Race Convert feet per second to miles per 1 hour | How fast is it going? Which is faster? | Unit Rates with Slope | |||||||||||||||||||
49 | 7.RP.2a | Recognize and represent proportional relationships between quantities. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table, or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. | ||||||||||||||||||||||
50 | Test for Proportionality | |||||||||||||||||||||||
51 | 7.RP.2b | Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. | ||||||||||||||||||||||
52 | Proportion Problems Slides File with Video Links | |||||||||||||||||||||||
53 | ||||||||||||||||||||||||
54 | This row is SERIES! | Reference Bank of Independent and Dependent Variables on x/y Axes | Find, then extend Unit rate with Graph, X/Y Table and Table | Solve a proportion problem with an equation, then validate the solution by extending the unit rate (no graph). | Solve a proportion word problem, unit rate, and COP and graph | Solve a proportion word problem then find and plot the COP and represent the equation as an equation: y=mx. | ||||||||||||||||||
55 | Cop From Tables | COP from Graph | Compare Prices at 2 Stores with Unit Rates | Proportion sets of 3 problems with the same theme, coefficient and Lined Paper LC | Compare rates of speed | Word Problem Proportion Templates with Diminishing Structure | ||||||||||||||||||
56 | 7.RP.2c | Graph Unit Rates Level 1 | Graph Equivalent Rates and Ratios | |||||||||||||||||||||
57 | π½ Graph = Rates Precursor Activity video | π½ Companion Video of Graphing Rates | Ladder Fact Functions | Graph fractions to illustrate slope | ||||||||||||||||||||
58 | 6.NS.6c | Plot points on a number line and all 4 quadrants | ||||||||||||||||||||||
59 | Plot Integers on Number Lines | Swoosh Game Quadrant I | Battleship Game | |||||||||||||||||||||
60 | 7.RP.2d | Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r ) where r is the unit rate. | ||||||||||||||||||||||
61 | Ladder Fact Functions | Graph fractions to illustrate slope | Define the slope of a line using arbitrary objects. | Graph Proportions from Descriptions | ||||||||||||||||||||
62 | 7.G.1 | Solve problems involving scale drawings of geometric figures, such as computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale. | ||||||||||||||||||||||
63 | Indirect Measurement Shadowmaster Activity | π½ Video Indirect Measurement with the Shadowmaster | Proportions relating to finding corresponding sides of similar figures | Fenway Park Distances | Picture Scale Proportion Problems | Missing dimensions using a scale photo. Find a required diameter from a given circumference. | ||||||||||||||||||
64 | ||||||||||||||||||||||||
65 | ||||||||||||||||||||||||
66 | Percents | Sept-Oct | Nov-Jan | Feb-Mar | Apr -Jun | |||||||||||||||||||
67 | Precursor (6.RP3.c) | Understand benchmark percents as part of a 100% whole. | ||||||||||||||||||||||
68 | β’ % Relative Products Drive x Facts | % Estimation Trees | Benchmark % Estimates | Fraction decimal % conversions | ||||||||||||||||||||
69 | ||||||||||||||||||||||||
70 | ||||||||||||||||||||||||
71 | ||||||||||||||||||||||||
72 | ||||||||||||||||||||||||
73 | 7.RP.3 | Use proportional relationships to solve multi-step ratio, rate, and percent problems. Examples: simple interest, tax, price increases and discounts, gratuities and commissions, fees, percent increase and decrease, percent error. | ||||||||||||||||||||||
74 | % of a whole: 15% 20% Tip Word Problems | Garden % Composition by Quantity and Area | Baseball 2018 Texas Percents 3-types | 3 Types of Related % Problems | ||||||||||||||||||||
75 | 1.2 Find the part % word problems | Find the Part 2.5 | Turkey Part % | % Areas | Mixed % Word Problems | |||||||||||||||||||
76 | ||||||||||||||||||||||||
77 | Q1 | Q2 | Q3 | Q4 | ||||||||||||||||||||
78 | Integers and Number Lines | Sept-Oct | Nov-Jan | Feb-Mar | Apr -Jun | |||||||||||||||||||
79 | Understand integers as nouns, defined by + hot or -cold adjectives. (-3 = 3 cold things.) | |||||||||||||||||||||||
80 | ||||||||||||||||||||||||
81 | ||||||||||||||||||||||||
82 | 7.NS.1 | Apply and extend previous understandings of addition and subtraction to add and subtract integers and other rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. | ||||||||||||||||||||||
83 | Combine Integers | |||||||||||||||||||||||
84 | π½ Combine Integers Movie | Combine Integer Pretest | Encode or Diagram Single Integer Terms | Combine Two Integers with Numbers and Red/Blue Models | Simplify Complex Terms -(-3)=+3 Using Fading Models | Combine Several Integers Using Color Cues | ||||||||||||||||||
85 | Combine Several Integers Without Color Cues | |||||||||||||||||||||||
86 | 7.NS.1a | Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged. A hydrogen atom has zero charge because its two constituents are oppositely charged; If you open a new bank account with a deposit of $30 and then withdraw $30, you are left with a $0 balance. | ||||||||||||||||||||||
87 | ||||||||||||||||||||||||
88 | 7.NS.1b | Understand p + q as the number located a distance |q| from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. | ||||||||||||||||||||||
89 | ||||||||||||||||||||||||
90 | 7.NS.1c | Understand subtraction of rational numbers as adding the additive inverse, p β q = p + (βq). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. | ||||||||||||||||||||||
91 | ||||||||||||||||||||||||
92 | 7.NS.2a | Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (β1)(β1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. | ||||||||||||||||||||||
93 | ||||||||||||||||||||||||
94 | 7.NS.2b | Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then β(p/q) = (βp)/q = p/(βq). Interpret quotients of rational numbers by describing real-world contexts. | ||||||||||||||||||||||
95 | ||||||||||||||||||||||||
96 | ||||||||||||||||||||||||
97 | Q1 | Q2 | Q3 | Q4 | ||||||||||||||||||||
98 | Computation With Rational Numbers | Sept-Oct | Nov-Jan | Feb-Mar | Apr -Jun | |||||||||||||||||||
99 | 5.NF.1 | Add and subtract fractions with unlike denominators (including mixed numbers). | ||||||||||||||||||||||
100 | π½ Fraction Video | π½ Fraction Video #2 | π½ Regroup Mixed # Video | Type 1 2 3 fraction addition flow chart | π½ Type 1 2 3 Flow chart video |