| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Gene Symbol | Phenotypic Defect | Reference | Protein class/Molecular function | Gene Name | Alternate names | Mutagen | Medicago Gene ID | Probeset | Lotus Gene ID | Soybean Gene ID | Phaseolus Gene ID | Myc Phenotype | Notes | Reference | |||||||||||
2 | Infection | Nodule Organogenesis | Fixation | |||||||||||||||||||||||
3 | GmACP | n/a | Nod+/- | n/a | Wang et al., 2014 | Carrier protein | ACYL CARRIER PROTEIN (ACP) | RNAi | Medtr7g080390 | Mtr.48571.1.S1_at | Lj1g3v2840250 | Glyma.18G244300 | Phvul.008G052400 | n/a | Wang, J., Tóth, K., Tanaka, K., Nguyen, C.T., Yan, Z., Brechenmacher, L., Dahmen, J., Chen, M., Thelen, J.J., and Qiu, L. (2014). A soybean acyl carrier protein, GmACP, is important for root nodule symbiosis. Molecular Plant-Microbe Interactions 27, 415-423. | |||||||||||
4 | PvAGO5, GmAGO5 | Inf- | Nod+/-, White++ | n/a | Reyero-Saavedra et al., 2017 | Multidomain protein (RNA silencing) | ARGONAUTE 5 (AGO5) | RNAi | Medtr4g056430, Medtr4g056470 | Mtr.45521.1.S1_at | Lj0g3v0169039.1 | Glyma.12G083500 | Phvul.011G088200 | n/a | Reyero-Saavedra, M., Qiao, Z., Sánchez-Correa, M., Díaz-Pineda, M., Reyes, J., Covarrubias, A., Libault, M., and Valdés-López, O. (2017). Gene silencing of ARGONAUTE5 negatively affects the establishment of the legume-rhizobia symbiosis. Genes 8, 352. | |||||||||||
5 | LjAMSH | Inf+/-, Inf* | Nod+/- | Fix* | Malolepszy et al., 2015 | Enzyme (Metalloprotease; Deubiquitinating) | ASSOCIATED MOLECULE WITH THE SH3 DOMAIN OF STAM (AMSH) | LORE1 | Medtr6g083940 | Mtr.21924.1.S1_at; Mtr.21925.1.S1_s_at | Lj2g3v0721190 | Glyma.07G093100 | Phvul.003G094300 | Myc+ | Małolepszy, A., Urbański, D.F., James, E.K., Sandal, N., Isono, E., Stougaard, J., and Andersen, S.U. (2015). The deubiquitinating enzyme AMSH 1 is required for rhizobial infection and nodule organogenesis in Lotus japonicus. The Plant Journal 83, 719-731. | |||||||||||
6 | LjAMT1.1 | n/a | Nod++ | Fix+/- | Rogato et al., 2008 | Transporter (Ammonium) | AMMONIUM TRANSPORTER 1.1 (AMT1.1) | Antisense | Medtr1g045550 | Mtr.10556.1.S1_at | Lj5g3v1314550, Lj0g3v0302059 | Glyma.10G132300 | Phvul.007G231700 | n/a | Rogato, A., D’Apuzzo, E., Barbulova, A., Omrane, S., Stedel, C., Simon-Rosin, U., Katinakis, P., Flemetakis, M., Udvardi, M., and Chiurazzi, M. (2008). Tissue-specific down-regulation of LjAMT1; 1 compromises nodule function and enhances nodulation in Lotus japonicus. Plant molecular biology 68, 585. | |||||||||||
7 | PvANN1 | Inf+/- | Nod+/- | Fix+/- | Carrasco-castilla et al., 2018 | Membrane binding protein | ANNEXIN1 (ANN1) | RNAi | Medtr8g038210 | Mtr.14183.1.S1_at | Lj0g3v0203419 | Glyma.13G199800 | Phvul.011G209300 | n/a | Carrasco-Castilla, J., Ortega-Ortega, Y., Jáuregui-Zúñiga, D., Juárez-Verdayes, M.A., Arthikala, M.-K., Monroy-Morales, E., Nava, N., Santana, O., Sánchez-López, R., and Quinto, C. (2018). Down-regulation of a Phaseolus vulgaris annexin impairs rhizobial infection and nodulation. Environmental and Experimental Botany 153, 108-119. | |||||||||||
8 | LjAPN1 | n/a | Nod+, Nod* | Fix- | Yamaya-Ito et al., 2018 | Enzyme (Aspartyl protease) | ASPARTIC PEPTIDASE NODULE-INDUCED 1 (APN1) | Ljsym104 | Somaclonal mutagenesis | Medtr0036s0070 | Mtr.8869.1.S1_at | Lotus Chromosome 3 LC279017.1 | Glyma.08G166200 | Phvul.005G050500 | n/a | Yamaya‐Ito, H., Shimoda, Y., Hakoyama, T., Sato, S., Kaneko, T., Hossain, M.S., Shibata, S., Kawaguchi, M., Hayashi, M., and Kouchi, H. (2018). Loss‐of‐function of ASPARTIC PEPTIDASE NODULE‐INDUCED 1 (APN 1) in Lotus japonicus restricts efficient nitrogen‐fixing symbiosis with specific Mesorhizobium loti strains. The Plant Journal 93, 5-16. | ||||||||||
9 | MtARF16a | Inf+/- | Nod+ | n/a | Breakspear et al., 2014 | TF (Auxin responsive) | AUXIN RESPONSE FACTOR 16a (ARF16a) | Tnt1 | Medtr1g094960 | Mtr.39233.1.S1_at | Lj5g3v1812820 | Glyma.10G210600 | Phvul.007G095000 | n/a | Breakspear, A., Liu, C., Roy, S., Stacey, N., Rogers, C., Trick, M., Morieri, G., Mysore, K.S., Wen, J., and Oldroyd, G.E. (2014). The root hair “infectome” of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. The Plant Cell 26, 4680-4701. | |||||||||||
10 | GmARF8a/GmARF8b | n/a | Nod++ | n/a | Wang et al., 2015 | TF (Auxin responsive) | AUXIN RESPONSE FACTOR 16a (ARF8a/ARF8b) | RNAi | Medtr5g076270, Medtr5g076270 | Mtr.5139.1.S1_at, Mtr.5198.1.S1_at | Lj2g3v2475530 | Glyma.14G208500, Glyma.02G239600 | Phvul.008G242400 | n/a | Wang, Y., Li, K., Chen, L., Zou, Y., Liu, H., Tian, Y., Li, D., Wang, R., Zhao, F., and Ferguson, B.J. (2015). MicroRNA167-directed regulation of the auxin response factors GmARF8a and GmARF8b is required for soybean nodulation and lateral root development. Plant physiology 168, 984-999. | |||||||||||
11 | MtARP3 | n/a | n/a | Fix* | Gavrin et al., 2015 | TF (Auxin responsive) | ACTIN RELATED PROTEIN (ARP2/ARP3) | RNAi | Medtr8g089630 | Mtr.13778.1.S1_at | Lj4g3v2717070 | Glyma.05G172600 | Phvul.002G253600 | n/a | Gavrin, A., Jansen, V., Ivanov, S., Bisseling, T., and Fedorova, E. (2015). ARP2/3-Mediated Actin Nucleation Associated With Symbiosome Membrane Is Essential for the Development of Symbiosomes in Infected Cells of Medicago truncatula Root Nodules. Mol Plant Microbe Interact 28, 605-614. | |||||||||||
12 | LjARPC1 | Inf+/- | Nod++, White++ | n/a | Hossain et al., 2012 | Multiprotein complex subunit (Actin nucleator) | ACTIN-RELATED PROTEIN COMPONENT1 (ARPC1) | EMS | Medtr3g049070 | Mtr.37170.1.S1_at | Lj6g3v0925910 | Glyma.10G216300 | Phvul.005G127400 | Myc+ | Hossain, M.S., Liao, J., James, E.K., Sato, S., Tabata, S., Jurkiewicz, A., Madsen, L.H., Stougaard, J., Ross, L., and Szczyglowski, K. (2012). Lotus japonicus ARPC1 is required for rhizobial infection. Plant physiology 160, 917-928. | |||||||||||
13 | PvBECLIN1 | n/a | Nod+/- | n/a | Estrada-Navarrete et al., 2016 | Multiprotein complex subunit (Autophagy related) | AUTOPHAGY RELATED PROTEIN | RNAi | Medtr3g018770 | Mtr.9470.1.S1_at | Lj0g3v0261969 | Glyma.11G153900 | Phvul.005G029900 | n/a | Estrada-Navarrete, G., Cruz-Mireles, N., Lascano, R., Alvarado-Affantranger, X., Hernández-Barrera, A., Barraza, A., Olivares, J.E., Arthikala, M.-K., Cárdenas, L., and Quinto, C. (2016). An autophagy-related kinase is essential for the symbiotic relationship between Phaseolus vulgaris and both rhizobia and arbuscular mycorrhizal fungi. The Plant Cell 28, 2326-2341. | |||||||||||
14 | GmBCH1/GmBCH2 | n/a | Nod* | Fix+/- | Kim et al., 2013 | Enzyme (Hydroxylase) | β-CAROTENE HYDROXYLASE (BCH1/BCH2) | RNAi | Medtr6g048440, Medtr7g085180 | Mtr.33915.1.S1_at, Mtr.50032.1.S1_at | Lj5g3v1988680, Lj0g3v0299729, Lj1g3v3948070 (BCH2), Lj1g3v3948060 (BCH2) | Glyma.10G231200, Glyma.16G043300 | Phvul.004G108900, Phvul.001G099900, Phvul.001G100100 | n/a | Kim, Y.-K., Kim, S., Um, J.-H., Kim, K., Choi, S.-K., Um, B.-H., Kang, S.-W., Kim, J.-W., Takaichi, S., and Song, S.-B. (2013). Functional implication of β-carotene hydroxylases in soybean nodulation. Plant physiology 162, 1420-1433. | |||||||||||
15 | GmBEHL1 | n/a | Nod++ | n/a | Yan et al., 2018 | TF (Brassinosteroid pathway) | BES1/BZR1 HOMOLOG LIKE1 | Artificial miRNA | Medtr5g019550 | Mtr.43192.1.S1_at | Lj2g3v1803080 | Glyma.01G178000 | Phvul.002G026700, Phvul.002G026800 | n/a | Yan, Q., Wang, L., and Li, X. (2018). GmBEHL1, a BES1/BZR1 family protein, negatively regulates soybean nodulation. Scientific reports 8, 7614. | |||||||||||
16 | MtBG2 | Inf++ | Nod++ | n/a | Gaudioso-Pedraza et al., 2018 | Enzyme (Glucanase) | β-1,3 -GLUCANASE (BG2) | RNAi | Medtr3g083580 | Mtr.20928.1.S1_at | Lj4g3v2604040 | Glyma.17G202900 | Phvul.001G056400 | n/a | Gaudioso-Pedraza, R., Beck, M., Frances, L., Kirk, P., Ripodas, C., Niebel, A., Oldroyd, G.E., Benitez-Alfonso, Y., and de Carvalho-Niebel, F. (2018). Callose-regulated symplastic communication coordinates symbiotic root nodule development. Current Biology 28, 3562-3577. e3566 | |||||||||||
17 | MtBHLH1 | n/a | Nod+ | Fix+ | Laurence Godiard et al., 2011 | TF (bHLH motif containing) | BASIC HELIX–LOOP–HELIX 1 (BHLH1) | CRES-T | Medtr3g099620 | Mtr.10993.1.S1_at | Lj1g3v1525930 | Glyma.04G098400 | Phvul.009G033800 | n/a | Godiard, L., Lepage, A., Moreau, S., Laporte, D., Verdenaud, M., Timmers, T., and Gamas, P. (2011). MtbHLH1, a bHLH transcription factor involved in Medicago truncatula nodule vascular patterning and nodule to plant metabolic exchanges. New Phytologist 191, 391-404. | |||||||||||
18 | MtBHLH476 | Inf+ | Nod+/- | Fix+ | Ariel et al.,2012 | TF (bHLH motif containing) | BASIC HELIX–LOOP–HELIX 476 (BHLH476) | RNAi | Medtr5g014520 | Mtr.253.1.S1_at | Lj2g3v1984620 | Glyma.01G198100 | Phvul.002G007400 | n/a | Ariel, F., Brault-Hernandez, M., Laffont, C., Huault, E., Brault, M., Plet, J., Moison, M., Blanchet, S., Ichanté, J.L., and Chabaud, M. (2012). Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncatula. The Plant Cell 24, 3838-3852. | |||||||||||
19 | PvBPS1 | Inf++ | Nod+/- | n/a | Arthikala et al., 2018 | Unknown (DUF) | BYPASS1 (BPS1) | RNAi | Medtr7g078700 | Msa.1056.1.S1_at | Lj1g3v2752330 | Glyma.18G237000 | Phvul.008G059600 | n/a | Arthikala, M.-K., Nanjareddy, K., and Lara, M. (2018). In BPS1 Downregulated Roots, the BYPASS1 Signal Disrupts the Induction of Cortical Cell Divisions in Bean-Rhizobium Symbiosis. Genes 9, 11. | |||||||||||
20 | MtBRI1 | n/a | Nod+/-, Nod* | n/a | Cheng et al., 2017 | Kinase (LRR-RLK) | BRASSINOSTEROID INSENSITIVE 1 | Tnt1 | Medtr3g095100 | Mtr.45830.1.S1_at | Lj1g3v1222370 | Glyma.04G218300, Glyma.06G147600 | Phvul.005G005900 | n/a | Cheng, X., Gou, X., Yin, H., Mysore, K.S., Li, J., and Wen, J. (2017). Functional characterisation of brassinosteroid receptor MtBRI1 in Medicago truncatula. Scientific reports 7, 9327. | |||||||||||
21 | LjBRUSH | Inf+/- | Nod+/- (C) | n/a | Chiasson et al., 2018 | Channel (Cations) | BRUSH | LjcngcIVA1 GOF | EMS-Tilling | Medtr5g007630 | - | Lj2g3v0632220 | Glyma.09G168500 | Phvul.004G143800 | Myc++ | Chiasson, D.M., Haage, K., Sollweck, K., Brachmann, A., Dietrich, P., and Parniske, M. (2017). A quantitative hypermorphic CNGC allele confers ectopic calcium flux and impairs cellular development. Elife 6, e25012. | ||||||||||
22 | LjBZF | n/a | Nod++ | n/a | Nishimura et al., 2002 | TF (bZIP domain containing) | BASIC LEUCINE ZIPPER FAMILY PROTEIN (BZF) | Ljsym77 | EMS | Medtr3g436010 | Mtr.9651.1.S1_at | Lj6g3v0937020 | Glyma.18G117100, Glyma.08G302500 | Phvul.006G029200 | n/a | Nishimura, R., Ohmori, M., Fujita, H., and Kawaguchi, M. (2002). A Lotus basic leucine zipper protein with a RING-finger motif negatively regulates the developmental program of nodulation. Proceedings of the National Academy of Sciences 99, 15206-15210. | ||||||||||
23 | MtCAS31 | n/a | Nod+, Pink +/- (C) | Fix+/- (C) | Li et al., 2018 | Dehydrin | COLD ACCLIMATION SPECIFIC (CAS31) | Tnt1 | Medtr6g084640 | Mtr.8651.1.S1_a_at | Lj2g3v0741950 | Glyma.09G185500 | - | n/a | Li, X., Feng, H., Wen, J., Dong, J., and Wang, T. (2018). MtCAS31 Aids Symbiotic Nitrogen Fixation by Protecting the Leghemoglobin MtLb120-1 Under Drought Stress in Medicago truncatula. Front Plant Sci 9, 633. | |||||||||||
24 | MtCBS1 | Inf++ | Nod++ | Fix+/- | Sinharoy et al., 2016 | Enzyme (Synthase) | CYSTATHIONE BETASYNTHASE 1 (CBS1) | Tnt1 | Medtr6g052300 | Mtr.23516.1.S1_at | Lj6g3v1537040 | Glyma.09G129700, Glyma.16G177500 | Phvul.004G106300 | n/a | Sinharoy, S., Torres-Jerez, I., Bandyopadhyay, K., Kereszt, A., Pislariu, C.I., Nakashima, J., Benedito, V.A., Kondorosi, E., and Udvardi, M.K. (2013). The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula. Plant Cell 25, 3584-3601. | |||||||||||
25 | LjCCD7 | Inf+ | Nod+/- | n/a | Liu et. al., 2013 | Enzyme (Oxidoreductase) | CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7) | RNAi | Medtr7g045370 | Mtr.32038.1.S1_at | Lj0g3v0146209 | Glyma.01G073200 | Phvul.008G152801 | n/a | Liu, J., Novero, M., Charnikhova, T., Ferrandino, A., Schubert, A., Ruyter-Spira, C., Bonfante, P., Lovisolo, C., Bouwmeester, H.J., and Cardinale, F. (2013). Carotenoid cleavage dioxygenase 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. Journal of experimental botany 64, 1967-1981. | |||||||||||
26 | MtCCS52a | n/a | Nod+/-, Nod* | Fix* | Vinardell et al., 2003 | Anaphase-promoting complex activator | CELL CYCLE SWITCH GENE encoding a 52 kDa protein (CCS 52a) | Antisense | Medtr4g102510 | Msa.3010.1.S1_at; Mtr.12852.1.S1_at; Mtr.4030.1.S1_at | Lj4g3v1327590 | Glyma.7G133000 | Phvul.003G213700 | n/a | Vinardell, J.M., Fedorova, E., Cebolla, A., Kevei, Z., Horvath, G., Kelemen, Z., Tarayre, S., Roudier, F., Mergaert, P., Kondorosi, A., and Kondorosi, E. (2003). Endoreduplication mediated by the anaphase-promoting complex activator CCS52A is required for symbiotic cell differentiation in Medicago truncatula nodules. The Plant cell 15, 2093-2105. | |||||||||||
27 | MtCDC16 | n/a | Nod++ | Fix+ | Kuppusamy et al.,2009 | Anaphase-promoting complex component | CELL DIVISION CYCLE16 (CDC16) | RNAi | Medtr8g058380 | Mtr.51354.1.S1_at | Lj0g3v0096099 | Glyma.06G228700 | Phvul.011G165500 | n/a | Kuppusamy, K.T., Ivashuta, S., Bucciarelli, B., Vance, C.P., Gantt, J.S., and VandenBosch, K.A. (2009). Knockdown of CELL DIVISION CYCLE16 reveals an inverse relationship between lateral root and nodule numbers and a link to auxin in Medicago truncatula. Plant physiology 151, 1155-1166. | |||||||||||
28 | MtCDPK1 | Inf* | Nod+/- | n/a | Ivashuta et al.,2005 | Enzyme (Calcium dependent Kinase) | CALCIUM DEPENDANT PROTEIN KINASE 1 (CDPK1) | RNAi | Medtr5g022030 | Mtr.249.1.S1_s_at | Lj2g3v1695240 | Glyma.01G166100, Glyma.11G077300 | Phvul.002G108700 | Myc+/- | Ivashuta, S., Liu, J., Liu, J., Lohar, D.P., Haridas, S., Bucciarelli, B., VandenBosch, K.A., Vance, C.P., Harrison, M.J., and Gantt, J.S. (2005). RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. The Plant Cell 17, 2911-2921. | |||||||||||
29 | LjCHIT5 | Inf+/- | Nod+, Pink +/- | Fix+/- | Malolepszy et al., 2018 | Enzyme (Glycosyl hydrolase) | CHITINASE 5 (CHIT5) | LORE1 | Medtr1g013150 | Mtr.42876.1.S1_at | Lj5g3v0525260 | Glyma.17G217000, Glyma.14G110700 | Phvul.001G046400 | n/a | Malolepszy, A., Kelly, S., Sørensen, K.K., James, E.K., Kalisch, C., Bozsoki, Z., Panting, M., Andersen, S.U., Sato, S., and Tao, K. (2018). A plant chitinase controls cortical infection thread progression and nitrogen-fixing symbiosis. Elife 7, e38874. | |||||||||||
30 | MtCHR | n/a | Nod+/- | n/a | Zhang et al., 2009 | Enzyme (Oxidoreductase) | CHALCONE REDUCTASE (CHR) | RNAi | Medtr5g097910 | Mtr.15678.1.S1_s_at | Lj2g3v3339170, Lj0g3v0328269, 8 other homologs | Glyma.02G307300 | Phvul.008G287200 | n/a | Wasson, A.P., Pellerone, F.I., and Mathesius, U. (2006). Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. The Plant Cell 18, 1617-1629. | |||||||||||
31 | MtCHS | n/a | Nod+/- | n/a | Zhang et al., 2009 | Enzyme (Synthase) | CHALCONE SYNTHASE (CHS) | RNAi | Medtr7g084300 | Msa.3134.1.S1_at | Lj4g3v2603590 | Glyma.19G105100 | Phvul.001G083000 | n/a | Zhang, J., Subramanian, S., Stacey, G., and Yu, O. (2009). Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. The Plant Journal 57, 171-183. | |||||||||||
32 | LjCIP73 | Inf+/- | Nod+/- | n/a | Kang et al., 2011 | Unknown (Scythe_N Ubiquitin-like domain containing) | CCAMK INTERACTING PROTEIN OF APPROXIMATELY 73 KDa (CIP73) | RNAi | Medtr4g116370 | Mtr.7126.1.S1_at | Lj4g3v1970880 | Glyma.17G106000 | Phvul.003G173700 | n/a | Kang, H., Zhu, H., Chu, X., Yang, Z., Yuan, S., Yu, D., Wang, C., Hong, Z., and Zhang, Z. (2011). A novel interaction between CCaMK and a protein containing the Scythe_N ubiquitin-like domain in Lotus japonicus. Plant physiology 155, 1312-1324. | |||||||||||
33 | LjCKX3 | Inf+/- | Nod+/- | n/a | Reid et al., 2016 | Enzyme (Oxidoreductase) | CYTOKININ OXIDASE/DEHYDROGENASE 3 (CKX3) | LORE1 | Medtr2g039410 | Mtr.14413.1.S1_at | Lj5g3v0692300 | Glyma.09G063900, Glyma.15G140000 | Phvul.009G231700 | Myc+ | Reid, D.E., Heckmann, A.B., Novák, O., Kelly, S., and Stougaard, J. (2016). CYTOKININ OXIDASE/DEHYDROGENASE3 maintains cytokinin homeostasis during root and nodule development in Lotus japonicus. Plant physiology 170, 1060-1074. | |||||||||||
34 | LjCLC1 | n/a | Nod+/- | n/a | Wang et al., 2015 | Protein (Endocytosis) | CLATHARIN HEAVY CHAIN1 | RNAi | Medtr3g070940 | Mtr.41546.1.S1_at | Lj6g3v0497300 | Glyma.02G258200, Glyma.14G058300 | Phvul.008G222800 | n/a | Wang, C., Zhu, M., Duan, L., Yu, H., Chang, X., Li, L., Kang, H., Feng, Y., Zhu, H., Hong, Z., and Zhang, Z. (2015). Lotus japonicus Clathrin Heavy Chain1 Is Associated with Rho-Like GTPase ROP6 and Involved in Nodule Formation. Plant Physiology 167, 1497-1510. | |||||||||||
35 | LjCLE-RS1 | n/a | Nod++ | n/a | Nishida et al., 2018 | Peptide (Signaling) | CLAVATA3/ENDOSPERM SURROUNDING REGION12 (CLE12/CLE13) | CLE-RS1/CLE-RS2 (root signal), RIC1/RIC2 (rhizobium induced CLE) | CRSISPR/Cas9 | Medtr4g079630 | Mtr.19172.1.S1_at | Lj0g3v0000559.1 | Glyma.13G368300 | Phvul.011G135900 | n/a | Nishida, H., Tanaka, S., Handa, Y., Ito, M., Sakamoto, Y., Matsunaga, S., Betsuyaku, S., Miura, K., Soyano, T., and Kawaguchi, M. (2018). A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus. Nature communications 9, 499. | ||||||||||
36 | LjCLE-RS2 | n/a | Nod++ | n/a | Nishida et al., 2018 | Peptide (Signaling) | CLAVATA3/ENDOSPERM SURROUNDING REGION12 (CLE12/CLE13) | CRSISPR/Cas9 | Medtr4g079610 | Mtr.19174.1.S1_at | AP010911.1 | Glyma.06G284100 | Phvul.011G135900 | n/a | Nishida, H., Tanaka, S., Handa, Y., Ito, M., Sakamoto, Y., Matsunaga, S., Betsuyaku, S., Miura, K., Soyano, T., and Kawaguchi, M. (2018). A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus. Nature communications 9, 499. | |||||||||||
37 | LjCLV2 | n/a | Nod++ | n/a | Krusell et al., 2011 | Receptor-like protein (LRR-RLP) | CLAVATA 2 (CLV2) | Pssym28 | RNAi | Medtr7g079550 | Mtr.34002.1.S1_s_at | Lj2g3v0743220 | Glyma.09G251800 | Phvul.008G055400 | Myc++ (tomato) | Krusell, L., Sato, N., Fukuhara, I., Koch, B.E., Grossmann, C., Okamoto, S., Oka‐Kira, E., Otsubo, Y., Aubert, G., and Nakagawa, T. (2011). The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation. The Plant Journal 65, 861-871. | ||||||||||
38 | MtCNGC15a | Inf+/- | Nod+/- | n/a | Charpentier et al., 2016 | Channel (Cations) | CYCLIC NUCLEOTIDE GATED CHANNELS 15A (CNGC15a) | Tnt1, RNAi | Medtr1g064240 | Mtr.50460.1.S1_at | Lj5g3v0659940 | Glyma.13G141000, Glyma.10G053900 | Phvul.007G148700 | Myc+/- | Charpentier, M., Sun, J., Martins, T.V., Radhakrishnan, G.V., Findlay, K., Soumpourou, E., Thouin, J., Véry, A.-A., Sanders, D., and Morris, R.J. (2016). Nuclear-localized cyclic nucleotide–gated channels mediate symbiotic calcium oscillations. Science 352, 1102-1105. | |||||||||||
39 | MtCNGC15b | Inf+/- | Nod+/- | n/a | Charpentier et al., 2016 | Channel (Cations) | CYCLIC NUCLEOTIDE GATED CHANNELS 15B (CNGC 15b) | Tnt1, RNAi | Medtr4g058730 | - | Lj0g3v0103009 | Glyma.12G076800 | Phvul.011G080800 | Myc+/- | Charpentier, M., Sun, J., Martins, T.V., Radhakrishnan, G.V., Findlay, K., Soumpourou, E., Thouin, J., Véry, A.-A., Sanders, D., and Morris, R.J. (2016). Nuclear-localized cyclic nucleotide–gated channels mediate symbiotic calcium oscillations. Science 352, 1102-1105. | |||||||||||
40 | MtCNGC15c | Inf+/- | Nod+/- | n/a | Charpentier et al., 2016 | Channel (Cations) | CYCLIC NUCLEOTIDE GATED CHANNELS 15C (CNGC 15c) | Tnt1, RNAi | Medtr2g094860 | Mtr.32319.1.S1_at | Lj3g3v1089390, Lj3g3v1089380 | Glyma.12G175000 | Phvul.005G133900 | Myc+/- | Charpentier, M., Sun, J., Martins, T.V., Radhakrishnan, G.V., Findlay, K., Soumpourou, E., Thouin, J., Véry, A.-A., Sanders, D., and Morris, R.J. (2016). Nuclear-localized cyclic nucleotide–gated channels mediate symbiotic calcium oscillations. Science 352, 1102-1105. | |||||||||||
41 | MtCOPT1 | n/a | Nod+ | n/a | Senovilla et al., 2018 | Transporter (Copper) | COPPER TRASPORTER 1 (COPT1) | Tnt1 | Medtr4g019870 | Mtr.42937.1.S1_s_at | Lj0g3v0091689.1 | Glyma.18G191300 | Phvul.008G113200 | n/a | Senovilla, M., Castro‐Rodríguez, R., Abreu, I., Escudero, V., Kryvoruchko, I., Udvardi, M.K., Imperial, J., and González‐Guerrero, M. (2018). Medicago truncatula COPPER TRANSPORTER 1 (Mt COPT 1) delivers copper for symbiotic nitrogen fixation. New Phytologist 218, 696-709. | |||||||||||
42 | MtCP6 | n/a | Nod+/-, Nod* | Fix++ | Pierre et al., 2014 | Enzyme (Cysteine protease) | CYSTEINE PROTEINASE 6 (CP6) | RNAi | Medtr4g079800 | Mtr.45750.1.S1_at | Lj3g3v1642060 | Glyma.12G127200 | Phvul.011G132100 | n/a | Pierre, O., Hopkins, J., Combier, M., Baldacci, F., Engler, G., Brouquisse, R., Hérouart, D., and Boncompagni, E. (2014). Involvement of papain and legumain proteinase in the senescence process of Medicago truncatula nodules. New Phytologist 202, 849-863. | |||||||||||
43 | MtCPK3 | n/a | Nod++ | n/a | Gargantini et al., 2006 | Enzyme (Calcium dependent Kinase) | CALCIUM DEPENDANT PROTEIN KINASE 3 (CPK3) | RNAi | Medtr3g051770 | Mtr.37994.1.S1_at | Lj2g3v3164080 | Glyma.08G316500 | Phvul.006G043700 | n/a | Gargantini, P.R., Gonzalez‐Rizzo, S., Chinchilla, D., Raices, M., Giammaria, V., Ulloa, R.M., Frugier, F., and Crespi, M.D. (2006). A CDPK isoform participates in the regulation of nodule number in Medicago truncatula. The Plant Journal 48, 843-856. | |||||||||||
44 | MtCRA2 | n/a | Nod+/- | n/a | Huault et al., 2014 | Enzyme (Kinase; LRR-RLK) | COMPACT ROOT ARCHITECTURE 2 (CRA2) | Tnt1 | Medtr3g110840 | Mtr.38398.1.S1_at | Lj1g3v2096140 | Glyma.06G090700, Glyma.04G088700 | Phvul.009G114400 | n/a | Huault, E., Laffont, C., Wen, J., Mysore, K.S., Ratet, P., Duc, G., and Frugier, F. (2014). Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor-like kinase. PLoS Genetics 10, e1004891. | |||||||||||
45 | MtCRE1 (L.O.F) | Inf++ | Nod+/- | n/a | Gonzalez-Rizzo et al., 2006 | Enzyme (Histidine kinase) | CYTOKININ RESPONSE 1 (CRE1) | Ljlhk1 (lotus histidine kinase), Ljlhk1 (lotus histidine kinase), spontaneous nodule formation (Ljsnf2) gof | RNAi | Medtr8g106150 | Mtr.45840.1.S1_at | Lj4g3v3113830 | Glyma.05G241600 | Phvul.002G324900 | Myc+ | Gonzalez-Rizzo, S., Crespi, M., and Frugier, F. (2006). The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. The Plant Cell 18, 2680-2693. | ||||||||||
46 | LjCRE1 (G.O.F) | Inf+/- | White++ (spontaneous) | n/a | Tirichine et al., 2007 | Enzyme (Histidine kinase) | CYTOKININ RESPONSE 1 (CRE1) | hit1 (hyperinfected1) | EMS | Medtr8g106150 | Mtr.45840.1.S1_at | Lj4g3v3113830 | Glyma.05G241600 | Phvul.002G324900 | n/a | Tirichine, L., Sandal, N., Madsen, L.H., Radutoiu, S., Albrektsen, A.S., Sato, S., Asamizu, E., Tabata, S., and Stougaard, J. (2007). A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315, 104-107. | ||||||||||
47 | MtCRN | n/a | Nod++ | n/a | Crook et al., 2016 | Pseudokinase | CORYNE (CRN) | Tnt1 | Medtr7g020850 | Mtr.35355.1.S1_at | Lj1g3v3137890 | Glyma.08G257700, Glyma.18G282100 | Phvul.008G019200 | n/a | Crook, A.D., Schnabel, E.L., and Frugoli, J.A. (2016). The systemic nodule number regulation kinase SUNN in Medicago truncatula interacts with MtCLV2 and MtCRN. The Plant Journal 88, 108-119. | |||||||||||
48 | LjCYCLOPS (MtIPD3) | Inf- | Nod* | n/a | Yano et al., 2008 | Transcriptional activator | INTERACTING PROTEIN DMI 3 | Ljcyclops | EMS-Tilling | Medtr5g026850 | Mtr.42174.1.S1_at, Mtr.29567.1.S1_at, Mtr.3453.1.S1_s_at | Lj2g3v1549600 | Glyma.01G149500 | Phvul.002G128600 | Myc+/- | Yano, K., Yoshida, S., Müller, J., Singh, S., Banba, M., Vickers, K., Markmann, K., White, C., Schuller, B., and Sato, S. (2008). CYCLOPS, a mediator of symbiotic intracellular accommodation. Proceedings of the National Academy of Sciences 105, 20540-20545. | ||||||||||
49 | MtIPD3L | Inf- | Nod- | n/a | Jin et al., 2018 | Transcriptional activator | INTERACTING PROTEIN DMI 3 LIKE(IPD3/IPD3L) | Tnt1 | MT35v5_contig_51603_1 | - | - | - | - | Myc+ | Jin, Y., Liu, H., Luo, D., Yu, N., Dong, W., Wang, C., Zhang, X., Dai, H., Yang, J., and Wang, E. (2016). DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nature Communications 7, 12433. | |||||||||||
50 | MtCYP15a | n/a | Nod* | Fix* | Sheokand S., et al., 2005 | Enzyme (Cysteine protease) | CYSTEINE PROTEASE 15a (CYP15a) | Antisense | Medtr1g023210 | Mtr.12217.1.S1_at | Lj1g3v2140860 | Glyma.17G254900 | Phvul.001G009900 | n/a | Sheokand, S., Dahiya, P., Vincent, J., and Brewin, N. (2005). Modified expression of cysteine protease affects seed germination, vegetative growth and nodule development in transgenic lines of Medicago truncatula. Plant Science 169, 966-975. | |||||||||||
51 | MtDELLA1 | Inf+/- | Nod+/- | n/a | Fonouni-Farde et al., 2016; Jin et al., 2016 | Transcriptional regulator (D-E-L-L-A motif) | DELLA 1 | PsLA | Tnt1 | Medtr3g065980 | Mtr.31658.1.S1_s_at | Lj6g3v0433880.1 | Glyma.11G216500, Glyma.18G040000 | Phvul.001G230500 | n/a (Myc+/- della1 della 2) | Fonouni-Farde, C., Tan, S., Baudin, M., Brault, M., Wen, J., Mysore, K.S., Niebel, A., Frugier, F., and Diet, A. (2016). DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection. Nature communications 7, 12636.; Jin, Y., Liu, H., Luo, D., Yu, N., Dong, W., Wang, C., Zhang, X., Dai, H., Yang, J., and Wang, E. (2016). DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nature Communications 7, 12433. | ||||||||||
52 | MtDELLA2 | Inf+/- | Nod+/- | n/a | Fonouni-Farde et al., 2016; Jin et al., 2016 | Transcriptional regulator (D-E-L-L-A motif) | DELLA 2 | PsCRY | Tnt1 | MT35v5_contig_52215_1 | - | Lj4g3v2436020.1 | Glyma.05G140400, Glyma.08G095800 | Phvul.003G291500 | n/a (Myc+/- della1 della 2) | Fonouni-Farde, C., Tan, S., Baudin, M., Brault, M., Wen, J., Mysore, K.S., Niebel, A., Frugier, F., and Diet, A. (2016). DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection. Nature communications 7, 12636.; Jin, Y., Liu, H., Luo, D., Yu, N., Dong, W., Wang, C., Zhang, X., Dai, H., Yang, J., and Wang, E. (2016). DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nature Communications 7, 12433. | ||||||||||
53 | MtDELLA3 | Inf+/- | Nod+/- | n/a | Fonouni-Farde et al., 2016; Jin et al., 2016 | Transcriptional regulator (D-E-L-L-A motif) | DELLA 3 | Tnt1 | MT35v5_contig_55897_1 | - | Lj6g3v0959470.1 | Glyma.04G150500, Glyma.06G213100, Glyma.10G190200, Glyma.20G200500 | Phvul.007G131200 | n/a | Fonouni-Farde, C., Tan, S., Baudin, M., Brault, M., Wen, J., Mysore, K.S., Niebel, A., Frugier, F., and Diet, A. (2016). DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection. Nature communications 7, 12636.; Jin, Y., Liu, H., Luo, D., Yu, N., Dong, W., Wang, C., Zhang, X., Dai, H., Yang, J., and Wang, E. (2016). DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nature Communications 7, 12433. | |||||||||||
54 | MtDME | Inf+ | Nod+, Nod*, White++ | Fix+/- | Carine Satgé et al., 2016 | Enzyme (DNA glycosylase) | DEMETER (DME) | RNAi | Medtr1g492760 | - | Lj5g3v1769410 | Glyma.20G188300 | Phvul.007G223600 | n/a | Satge, C., Moreau, S., Sallet, E., Lefort, G., Auriac, M.-C., Rembliere, C., Cottret, L., Gallardo, K., Noirot, C., and Jardinaud, M.-F. (2016). Reprogramming of DNA methylation is critical for nodule development in Medicago truncatula. Nature plants 2, 16166. | |||||||||||
55 | MtDMI1(LjPOLLUX) | Inf- | Nod- | Fix- | Ane et al., 2004 | Channel (Cations) | DOES NOT MAKE Infections 1 (DMI1) | Ljcastor, Ljpollux, Pssym8 | EMS mutagenesis, Tnt1 (Peiter et al., 2007) | Medtr2g005870 | Mtr.124.1.S1_s_at; Mtr.19417.1.S1_at | Lj6g3v2275020, Lj6g3v2275010 | Glyma.12G167300 | Phvul.006G218700 | Myc- | Ané, J.-M., Kiss, G.B., Riely, B.K., Penmetsa, R.V., Oldroyd, G.E., Ayax, C., Lévy, J., Debellé, F., Baek, J.-M., and Kalo, P. (2004). Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303, 1364-1367. | ||||||||||
56 | LjCASTOR | Inf- | Nod- | n/a | Imaizumi-Anraku et al., 2005 | Channel (Cations) | DOES NOT MAKE Infections 1 (DMI1) | EMS- Tilling | - | - | Lj6g3v2275020, Lj6g3v2275010 | Glyma.12G167300 | Phvul.006G218700 | Myc- | Imaizumi-Anraku, H., Takeda, N., Charpentier, M., Perry, J., Miwa, H., Umehara, Y., Kouchi, H., Murakami, Y., Mulder, L., and Vickers, K. (2005). Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433, 527. | |||||||||||
57 | LjSYMRK | Inf- | Nod- | Fix- | Stracke et al., 2002 | Enzyme (Kinase; LRR-RLK) | SYMBIOTIC RECEPTOR KINASE (SYMRK)/DOES NOT MAKE Infections 2 (DMI2) | Ljsymrk (symbiotic receptor kinase), Msnork (nodulation receptor kinase; Pssym19 | EMS mutagenesis, LATER: y ray, Tnt1 | Medtr5g030920 | Mtr.51192.1.S1_at | Lj2g3v1467920 | Glyma.01G020100, Glyma.09G202300 | Phvul.002G143400, Phvul.002G116200 | Myc- | Stracke, S., Kistner, C., Yoshida, S., Mulder, L., Sato, S., Kaneko, T., Tabata, S., Sandal, N., Stougaard, J., and Szczyglowski, K. (2002). A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417, 959. | ||||||||||
58 | MtCCaMK (L.O.F) | Inf- | Nod- | Fix- | Levy et al., 2004; Mitra et al., 2004 | Kinase (Calcium/Calmodulin dependent) | CALCIUM CALMODULIN KINASE (CCaMK)/DOES NOT MAKE Infections 3 (DMI3) | Pssym9 | EMS mutagenesis | Medtr8g043970 | Mtr.8930.1.S1_at | Lj3g3v1739280 | Glyma.15G222300 | Phvul.011G186900 | Myc- | Lévy, J., Bres, C., Geurts, R., Chalhoub, B., Kulikova, O., Duc, G., Journet, E.-P., Ané, J.-M., Lauber, E., and Bisseling, T. (2004). A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303, 1361-1364.; Mitra, R.M., Gleason, C.A., Edwards, A., Hadfield, J., Downie, J.A., Oldroyd, G.E., and Long, S.R. (2004). A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proceedings of the National Academy of Sciences 101, 4701-4705. | ||||||||||
59 | LjCCaMK (G.O.F) | Inf- | White++ (spontaneous) | n/a | Tirichine et al., 2006 | Kinase (Calcium/Calmodulin dependent) | CALCIUM CALMODULIN KINASE (CCaMK)/DOES NOT MAKE Infections 3 (DMI3) | Lsnf1 (spontaneous nodule formation1) | EMS mutagenesis | Medtr8g043970 | Mtr.8930.1.S1_at | Lj3g3v1739280 | Glyma.15G222300 | Phvul.011G186900 | n/a | Tirichine, L., Imaizumi-Anraku, H., Yoshida, S., Murakami, Y., Madsen, L.H., Miwa, H., Nakagawa, T., Sandal, N., Albrektsen, A.S., and Kawaguchi, M. (2006). Deregulation of a Ca 2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441, 1153. | ||||||||||
60 | MtDNF1 | n/a | Nod*, White++ | Fix-, Fix* | Wang et al., 2010; Van de Velde et al., 2010 | Signal peptidase complex subunit | DEFECTIVE IN Nitrogen Fixation1 (DNF1) | FNB | Medtr3g027890 | Mtr.43876.1.S1_at | Lj1g3v4931800 | Glyma.10G156000 | Phvul.001G228900 | n/a | Wang, D., Griffitts, J., Starker, C., Fedorova, E., Limpens, E., Ivanov, S., Bisseling, T., and Long, S. (2010). A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327, 1126-1129., Van de Velde, W., Zehirov, G., Szatmari, A., Debreczeny, M., Ishihara, H., Kevei, Z., Farkas, A., Mikulass, K., Nagy, A., and Tiricz, H. (2010). Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327, 1122-1126. | |||||||||||
61 | MtDNF2 | n/a | Nod++, White++ | Fix-, Fix* | Bourcy et al., 2014 | Enzyme (Phosphatidylinositol phospholipase C‐like) | DEFECTIVE IN Nitrogen Fixation2 (DNF2) | FNB, Tnt1 | Medtr4g085800 | Mtr.630.1.S1_at | - | Glyma.02G102700 | Phvul.003G048300 | n/a | Bourcy, M., Brocard, L., Pislariu, C.I., Cosson, V., Mergaert, P., Tadege, M., Mysore, K.S., Udvardi, M.K., Gourion, B., and Ratet, P. (2013). Medicago truncatula DNF2 is a PI‐PLC‐XD‐containing protein required for bacteroid persistence and prevention of nodule early senescence and defense‐like reactions. New Phytologist 197, 1250-1261. | |||||||||||
62 | MtDNF4 | n/a | Nod*, White++ | Fix* | Kim et al., 2015 | Peptide (Cysteine-rich) | DEFECTIVE IN Nitrogen Fixation4 (DNF4) | NCR211 | FNB | Medtr4g035705 | - | - | - | - | n/a | Kim, M., Chen, Y., Xi, J., Waters, C., Chen, R., and Wang, D. (2015). An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. Proceedings of the National Academy of Sciences 112, 15238-15243. | ||||||||||
63 | MtDNF7 | n/a | Nod*, White++ | Fix-, Fix* | Horvath et al, 2015 | Peptide (Cysteine-rich) | DEFECTIVE IN Nitrogen Fixation7 (DNF7) | NCR167 | FNB | Medtr7g029760 | Mtr.3210.1.S1_at | - | - | - | n/a | Horváth, B., Domonkos, Á., Kereszt, A., Szűcs, A., Ábrahám, E., Ayaydin, F., Bóka, K., Chen, Y., Chen, R., and Murray, J.D. (2015). Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant. Proceedings of the National Academy of Sciences 112, 15232-15237. | ||||||||||
64 | MtEFD | Inf++ | Nod++ | n/a | Vernie et al., 2008 | TF (Ethylene response factor) | ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULE DIFFERENTIATION (EFD) | Deletion TILLING | Medtr4g008860 | Mtr.41581.1.S1_at | Lj3g3v0014470 | Glyma.08G216600, Glyma.07G025800 | Phvul.010G159500 | Myc+ | Vernié, T., Moreau, S., De Billy, F., Plet, J., Combier, J.-P., Rogers, C., Oldroyd, G., Frugier, F., Niebel, A., and Gamas, P. (2008). EFD is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula. The Plant Cell 20, 2696-2713. | |||||||||||
65 | MtSKL(LjEIN2a) | Inf++ | Nod++ | n/a | Penmetsa et al., 2008 | NRAMP Protein | ETHYLENE INSENSITIVE 2 (EIN2a) | Mtskl (sickle) | EMS | Medtr0041s0030 | Mtr.9302.1.S1_at | Lj1g3v4590690 | Glyma.03G181400 | Phvul.001G177500 | Myc++ | Varma Penmetsa, R., Uribe, P., Anderson, J., Lichtenzveig, J., Gish, J.C., Nam, Y.W., Engstrom, E., Xu, K., Sckisel, G., and Pereira, M. (2008). The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. The Plant Journal 55, 580-595. | ||||||||||
66 | LjEIN2b | Inf++ | Nod++ | Fix-/- | Reid et al., 2018 | NRAMP Protein | ETHYLENE INSENSITIVE 2 (EIN2a/EIN2b) | LORE1 | - | - | Lj5g3v0659810 | Glyma.13G145100, Glyma.10G058300 | Phvul.007G150600 | n/a | Reid, D., Liu, H., Kelly, S., Kawaharada, Y., Mun, T., Andersen, S.U., Desbrosses, G., and Stougaard, J. (2018). Dynamics of ethylene production in response to compatible Nod factor. Plant physiology 176, 1764-1772. | |||||||||||
67 | LjENOD40-1/ENOD40-2 | Inf+ | Nod+/- | n/a | Kumagai et al., 2006 | Peptide | EARLY NODULIN 40 | RNAi | MT4Noble_057132, Medtr8g069785 | - | Lj3g3v3599510 | Glyma.01G028500 | Phvul.002G064232 | n/a | Kumagai, H., Kouchi, H., Kinoshita, E., and Ridge, R.W. (2006). RNAi Knock-Down of ENOD40 s Leads to Significant Suppression of Nodule Formation in Lotus japonicus. Plant and Cell Physiology 47, 1102-1111. | |||||||||||
68 | GmENOD93 | n/a | Nod+/-, Nod* | n/a | Yan et al., 2015 | Membrane protein | EARLY NODULIN 93 | LORE1 | - | - | - | Glyma.06G247600 | - | n/a | Yan, Z., Hossain, M.S., Arikit, S., Valdés‐López, O., Zhai, J., Wang, J., Libault, M., Ji, T., Qiu, L., and Meyers, B.C. (2015). Identification of microRNAs and their mRNA targets during soybean nodule development: functional analysis of the role of miR393j‐3p in soybean nodulation. New Phytologist 207, 748-759. | |||||||||||
69 | LjEPR3 | Inf+/-, Inf* | Nod* | n/a | Kawaharada et al., 2015 | Enzyme (Kinase; LysM-RLK) | EXOPOLYSACCHARIDE RECEPTOR (EPR3) | Ljlys3, Ljexo277,MtLYK10 | LORE1 | Medtr5g033490 | Mtr.25148.1.S1_at | Lj2g3v1415410 | Glyma.08G283300 | Phvul.002G059500, Pv03g003063700 | n/a | Kawaharada, Y., Kelly, S., Nielsen, M.W., Hjuler, C.T., Gysel, K., Muszyński, A., Carlson, R., Thygesen, M.B., Sandal, N., and Asmussen, M. (2015). Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 523, 308. | ||||||||||
70 | LjERF1 | n/a | Nod+/- | n/a | Asamizu et al., 2008 | TF (Ethylene responsive) | ETHYLENE RESPONSE FACTOR 1 (ERF1) | RNAi | Medtr1g074370 | Mtr.39861.1.S1_at | Lj5g3v1167370 | Glyma.20G203700 | Phvul.007G127800 | n/a | Asamizu, E., Shimoda, Y., Kouchi, H., Tabata, S., and Sato, S. (2008). A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule-associated transcription factors of Lotus japonicus. Plant physiology 147, 2030-2040. | |||||||||||
71 | MtERN1 | Inf+/-, Inf* | Nod-, Nod* | n/a | Middleton et al., 2007 | TF (Ethylene responsive) | ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULATION1 (ERN1) | Mtbit1 (branched Infection thread, poodle | Fast Neutron mutagenesis | Medtr7g085810 | Mtr.7556.1.S1_at | Lj1g3v3975310 | Glyma.19G113100 | Phvul.001G111800 | Myc+ | Middleton, P.H., Jakab, J., Penmetsa, R.V., Starker, C.G., Doll, J., Kaló, P., Prabhu, R., Marsh, J.F., Mitra, R.M., and Kereszt, A. (2007). An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. The Plant Cell 19, 1221-1234. | ||||||||||
72 | MtERN2 | Inf+, Inf* | Nod+, Nod* | Fix+, Fix* | Cerri et al., 2016 | TF (Ethylene responsive) | ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULATION2 (ERN2) | TILLING, Tnt1 | Medtr6g029180 | Mtr.43947.1.S1_at | - | Glyma.16G154100, Glyma.02G072800 | Phvul.001G160100 | Myc+ | Cerri, M.R., Frances, L., Kelner, A., Fournier, J., Middleton, P.H., Auriac, M.-C., Mysore, K.S., Wen, J., Erard, M., and Barker, D.G. (2016). The symbiosis-related ERN transcription factors act in concert to coordinate rhizobial host root infection. Plant physiology 171, 1037-1054. | |||||||||||
73 | MtEXO70H4 | Inf+/-, Inf* | Nod+ | n/a | Liu et al., 2019 | Membrane protein (Exocyst complex subunit) | EXOCYST70H4 | Tnt1 | Medtr4g062330 | Mtr.21216.1.S1_at | Lj0g3v0313429 | Glyma.11G144600, Glyma.12G075200 | Phvul.011G068800, Phvul.L003900 | n/a | Liu, C.W, Breakspear, A., Stacey, N., Findlay, K., Nakashima A., Ramakrishnan, K., Endre, A., de Carvalho-Niebel, F., Oldroyd, G.E.D, Udvardi, M.K., Fournier, J., Murray, J.D The infectosome is required for polar growth of rhizobial infection threads Nature Comms. 2019 | |||||||||||
74 | GmEXPB2 | n/a | Nod+/-, Nod* | Fix+/- | Li et al., 2015 | Expansin | β-EXPANSIN B2 (EXPB2) | RNAi | Medtr0118s0070 | Mtr.33549.1.S1_at | Lj5g3v0642670.1 | Glyma.10G122300 | Phvul.008G144100 | n/a | Li, X., Zhao, J., Tan, Z., Zeng, R., and Liao, H. (2015). GmEXPB2, a cell wall β-expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development. Plant Physiology 169, 2640-2653. | |||||||||||
75 | LjFEN1 | Inf+ | Nod* | Fix- | Hakoyama et al., 2009 | Enzyme (Homocitrate Synthase) | FAIL IN ENLARGEMENT of infection CELLS (FEN1) | EMS mutagenesis | - | - | Lj1g3v3690180, Lj1g3v3690020 | Glyma.19g120400, Glyma.19g120600, Glyma.03g005700 | Phvul.007G004600 | n/a | Hakoyama, T., Niimi, K., Watanabe, H., Tabata, R., Matsubara, J., Sato, S., Nakamura, Y., Tabata, S., Jichun, L., and Matsumoto, T. (2009). Host plant genome overcomes the lack of a bacterial gene for symbiotic nitrogen fixation. Nature 462, 514. | |||||||||||
76 | MtFER2 | n/a | Nod+ | Fix+/- | Dhanushkodi et al., 2018 | Protein complex (Iron scavenging) | FERRITINS (FER2/FER3) | RNAi | Medtr5g083170 | Mtr.12355.1.S1_at | Lj2g3v2806680 | Glyma.02G262500 | Phvul.001G245700 | n/a | Dhanushkodi, R., Matthew, C., McManus, M.T., and Dijkwel, P.P. (2018). Drought-induced senescence of Medicago truncatula nodules involves serpin and ferritin to control proteolytic activity and iron levels. New Phytol 220, 196-208. | |||||||||||
77 | MtFER3 | n/a | Nod+ | Fix+/- | Dhanushkodi et al., 2018 | Protein complex (Iron scavenging) | FERRITINS (FER2/FER3) | RNAi | Medtr4g014540 | Msa.1670.1.S1_at | Lj3g3v1378250 | Glyma.03G050100 | Phvul.010G065600 | n/a | Dhanushkodi, R., Matthew, C., McManus, M.T., and Dijkwel, P.P. (2018). Drought-induced senescence of Medicago truncatula nodules involves serpin and ferritin to control proteolytic activity and iron levels. New Phytol 220, 196-208. | |||||||||||
78 | MtFLOT2 | Inf+/- | Nod+/- | Fix+/- | Haney et al., 2010 | Membrane protein | FLOTILLIN 2 (FLOT2) | RNAi | Medtr3g106420 | - | Lj1g3v1854330 | Glyma.06G065600 | Phvul.009G090700 | n/a | Haney, C.H., and Long, S.R. (2010). Plant flotillins are required for infection by nitrogen-fixing bacteria. Proc Natl Acad Sci U S A 107, 478-483. | |||||||||||
79 | MtFLOT4 | Inf+/- | Nod+/- | Fix+/- | Haney et al., 2010 | Membrane protein | FLOTILLIN 4 (FLOT4) | RNAi | Medtr3g106430 | Mtr.11786.S1_at | Lj0g3v0315989, | Glyma.06G065600 | Phvul.009G090700 | n/a | Haney, C.H., and Long, S.R. (2010). Plant flotillins are required for infection by nitrogen-fixing bacteria. Proc Natl Acad Sci U S A 107, 478-483. | |||||||||||
80 | MtFNSII | n/a | Nod+/- | n/a | Zhang et al., 2009 | Enzyme (Synthase) | FLAVONE SYNTHASE (FNSII) | RNAi | Medtr7g027960 | Mtr.1299.1.S1_s_at | - | Glyma.13G173500 | Phvul.003G074000 | n/a | Zhang, J., Subramanian, S., Stacey, G., and Yu, O. (2009). Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. The Plant Journal 57, 171-183. | |||||||||||
81 | GmFWL1 | n/a | Nod+/- | n/a | Libault et al., 2010 | MtGA2ox10 | Unknown (PLAC8 domain containing) | FRUIT WEIGHT 2.2-LIKE 1 (FWL1) | RNAi | Medtr6g084940 | - | Chromosome location AP004536.1 | Glyma.09G187000 | Phvul.003G292900 | n/a | Libault, M., Zhang, X.C., Govindarajulu, M., Qiu, J., Ong, Y.T., Brechenmacher, L., Berg, R.H., Hurley‐Sommer, A., Taylor, C.G., and Stacey, G. (2010). A member of the highly conserved FWL (tomato FW2. 2‐like) gene family is essential for soybean nodule organogenesis. The Plant Journal 62, 852-864. | ||||||||||
82 | MtGA2ox10 | Inf+/- | Nod+/-, Nod* | n/a | Kim et al., 2019 | Enzyme (Oxidase) | GIBERELLIC ACID 20-OXIDASE | CRISPR/Cas9 | Medtr4g074130 | - | Lj3g3v3500200 | Glyma.11G104800, Glyma.12G029800 | Phvul.011G032800 | n/a | Kim, G.-B., Son, S.-U., Yu, H.-J., and Mun, J.-H. (2019). MtGA2ox10 encoding C20-GA2-oxidase regulates rhizobial infection and nodule development in Medicago truncatula. Scientific Reports 9, 5952. | |||||||||||
83 | GmGα | n/a | Nod++ | n/a | Choudhury and Pandey, 2015 | Heterotrimeric G-protein complex subunit | Soybean heterotrimeric G PROTEINS (Ga) | RNAi | Medtr1g015750 | Mtr.5675.1.S1_s_at | Lj5g3v0433470 | Glyma.17G226700 | Phvul.001G092700 | n/a | Choudhury, S.R., and Pandey, S. (2015). Phosphorylation-dependent regulation of G-protein cycle during nodule formation in soybean. The Plant Cell 27, 3260-3276. | |||||||||||
84 | LjGLB1 | Inf+/- | Nod+/- | Fix+/- | Fukudome et al., 2016 | Oxygen carrier hemoprotein | non-symbiotic Class 1 HAEMOGLOBIN 1 (GLB1) | LORE1, TILLING | Medtr4g068860 | Msa.878.1.S1_at | Lj4g3v0353440 | Glyma.11G121800 | Phvul.011G048700 | n/a | Fukudome, M., Calvo-Begueria, L., Kado, T., Osuki, K.-i., Rubio, M.C., Murakami, E.-i., Nagata, M., Kucho, K.-i., Sandal, N., and Stougaard, J. (2016). Hemoglobin LjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in the Lotus japonicus–Mesorhizobium loti symbiosis. Journal of experimental botany 67, 5275-5283. | |||||||||||
85 | GmGβ1/GmGβ2/GmGβ3/GmGβ4 | n/a | Nod+/-, Nod* | Fix* | Choudhury and Pandey, 2013 | Heterotrimeric G-protein complex subunit | Soybean heterotrimeric G PROTEINS (GmGβ1/GmGβ2/GmGβ3/GmGβ4) | RNAi | Medtr3g116500 | Mtr.10712.1.S1_at | Lj1g3v3407660(GmGβ3); Lj1g3v3407660 (GmGβ2) | GmGβ1 (Glyma.12G043900), GmGβ2 (Glyma.11G118500), GmGβ3 (Glyma.06G013000), GmGβ4 (Glyma.04G013100) | Phvul.011G045900 | n/a | Choudhury, S.R., and Pandey, S. (2013). Specific subunits of heterotrimeric G proteins play important roles during nodulation in soybean. Plant physiology 162, 522-533. | |||||||||||
86 | GmGγ1/GmGγ2/GmGγ3/GmGγ4/GmGγ5/GmGγ6/GmGγ7/GmGγ8/GmGγ9,GmGγ10 | n/a | Nod+/-, Nod* | Fix* | Choudhury and Pandey, 2013 | Heterotrimeric G-protein complex subunit | Soybean heterotrimeric G PROTEINS (GmGγ1/GmGγ2/GmGγ3/GmGγ4/GmGγ5/GmGγ6/GmGγ7/GmGγ8/GmGγ9,GmGγ10) | RNAi | Medtr1g071100 | Mtr.7374.1.S1_at | Lj5g3v1014880 (GmGy1) | GmGγ1 (Glyma.10G03610), GmGγ2 (Glyma.02G16190), GmGγ3 (Glyma.20G33390), GmGγ4 (Glyma.10G32215), GmGγ5 (Glyma.11G18050), GmGγ6 (Glyma.14G17060), GmGγ7 (Glyma.17G29590), GmGγ8 (Glyma.15G19630), GmGγ9 (Glyma.17G05640), and GmGγ10 (Glyma.07G04510) | Phvul.007G175700 | n/a | Choudhury, S.R., and Pandey, S. (2013). Specific subunits of heterotrimeric G proteins play important roles during nodulation in soybean. Plant physiology 162, 522-533. | |||||||||||
87 | LjHIP | n/a | Nod++ | n/a | Kang et al., 2015 | Molecular chaperone protein | HSC/HSP70 INTERACTING PROTEIN (HIP) | RNAi | Medtr4g102390 | Mtr.40545.1.S1_a_at | Lj4g3v1327390 | Glyma.05G051600, Glyma.17G133600 | Phvul.003G214200 | n/a | Kang, H., Xiao, A., Huang, X., Gao, X., Yu, H., He, X., Zhu, H., Hong, Z., and Zhang, Z. (2015). A Lotus japonicus cochaperone protein interacts with the ubiquitin-like domain protein CIP73 and plays a negative regulatory role in nodulation. Molecular Plant-Microbe Interactions 28, 534-545. | |||||||||||
88 | MtHMGR1 | Inf- | Nod- | n/a | Kevei et al., 2007 | Enzyme (Oxidoreductase) | 3-HYDROXY-3-METHYLGLUTARYL COENZYME A REDUCTASE 1 (HMGR1) | RNAi | Medtr5g026460 | Mtr.40156.1.S1_at | Lj2g3v1574250.1 | Glyma.01G156700 | Phvul.006G008200 | n/a | Kevei, Z., Lougnon, G., Mergaert, P., Horváth, G.V., Kereszt, A., Jayaraman, D., Zaman, N., Marcel, F., Regulski, K., and Kiss, G.B. (2007). 3-Hydroxy-3-methylglutaryl coenzyme A reductase1 interacts with NORK and is crucial for nodulation in Medicago truncatula. The Plant Cell 19, 3974-3989. | |||||||||||
89 | GmIFS1/GmIFS2 | n/a | Nod+/- | n/a | Subramanian et al., 2006 | Enzyme (Synthase) | ISOFLAVONE SYNTHASE (IFS) | RNAi | Medtr4g088160, Medtr4g088170, Medtr4g088195 | Mtr.10492.1.S1_x_at, Mtr.40276.1.S1_at, Mtr.30765.1.S1_at | Lj4g3v0486150, Lj4g3v0485100, Lj4g3v0485090 | Glyma.07G202300, Glyma.13G173500 | Phvul.003G051700, Phvul.003G051800, Phvul.003G074000 | n/a | Subramanian, S., Stacey, G., and Yu, O. (2006). Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. The Plant Journal 48, 261-273. | |||||||||||
90 | LjIGN1 | n/a | Nod+, Nod* | Fix-, Fix* | Kumagai et al., 2007 | Membrane protein (Ankyrin-repeat domain) | INEFFECTIVE GREENISH NODULE 1 (IGN1) | Somatic mutation | Medtr7g100430 | Mtr.11594.1.S1_at | Lj5g3v2288700 | Glyma.20G241200, Glyma.10G291900 | Phvul.007G008900 | n/a | Kumagai, H., Hakoyama, T., Umehara, Y., Sato, S., Kaneko, T., Tabata, S., and Kouchi, H. (2007). A novel ankyrin-repeat membrane protein, IGN1, is required for persistence of nitrogen-fixing symbiosis in root nodules of Lotus japonicus. Plant Physiology 143, 1293-1305. | |||||||||||
91 | GmINS1 | n/a | Nod+/- | Fix+/- | Li et al., 2018 | Cell wall component (b-expansin) | INCREASING NODULE SIZE 1 (INS1) | RNAi | Medtr1g032730 | Mtr.32987.1.S1_at | Lj0g3v0264009 | Glyma.07G172000 | Phvul.003G016300 | n/a | Li, X., Zheng, J., Yang, Y., and Liao, H. (2018a). INCREASING NODULE SIZE1 expression is required for normal rhizobial symbiosis and nodule development. Plant physiology 178, 1233-1248. | |||||||||||
92 | LjIPT3 | n/a | Nod++ | n/a | Sasaki et al., 2014 | Enzyme (Transferase) | ISOPENTENYL TRANSFERASE (IPT3) | LORE1 | Medtr1g072540 | Mtr.12113.1.S1_at | Lj5g3v0962690.1 | Glyma.10G025300 | Phvul.007G170100 | n/a | Sasaki, T., Suzaki, T., Soyano, T., Kojima, M., Sakakibara, H., and Kawaguchi, M. (2014). Shoot-derived cytokinins systemically regulate root nodulation. Nature Communications 5, 4983. | |||||||||||
93 | LjKLV | n/a | Nod++, Nod* | n/a | Miyazawa et al., 2010 | Enzyme (Kinase; LRR-RLK) | KLAVIER (KLV) | Ion Beam Mutagenesis | Medtr6g015265, Medtr6g015190 | Mtr.43460.1.S1_at, Mtr.9737.1.S1_at | Lj1g3v3023720 | Glyma.18G267000, Glyma.13G056200 | Phvul.004G037600 | n/a | Miyazawa, H., Oka-Kira, E., Sato, N., Takahashi, H., Wu, G.-J., Sato, S., Hayashi, M., Betsuyaku, S., Nakazono, M., and Tabata, S. (2010). The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in Lotus japonicus. Development 137, 4317-4325. | |||||||||||
94 | MtKNAT3/MtKNAT5/MtKNAT9/MtKNAT10 | Inf+ | Nod+, Nod* | n/a | Di Giacomo et al., 2017 | TF (KNOX Homeodomain) | KNOTTED-1 LIKE TAKE HOMEDOMAIN proteins (KNAT3/KNAT5/KNAT9/KNAT10) | RNAi | Medtr1g012960, Medtr3g106400, Medtr4g116545, Medtr2g461240 | Lj1g3v1853300, Lj0g3v0268639, Lj6g3v1088990 | Glyma.14G112400 (KNAT3), Glyma.04G064100 (KNAT5), Glyma.06G065200 (KNAT5), Glyma.17G104800 (KNAT9), Glyma.15G202200 (KNAT10) | Phvul.009G090500, Phvul.003G174900, Phvul.009G209500 | n/a | Di Giacomo, E., Laffont, C., Sciarra, F., Iannelli, M.A., Frugier, F., and Frugis, G. (2017). KNAT3/4/5‐like class 2 KNOX transcription factors are involved in Medicago truncatula symbiotic nodule organ development. New Phytologist 213, 822-837. | ||||||||||||
95 | LjLAN | Inf- | Nod+/- | Fix+/- | Suzaki et al., 2019 | Multiprotein complex | LACK OF SYMBIONT ACCOMMODATION (LAN) | EMS, LORE1, CRISPR/Cas9 | Medtr3g116260 | Mtr.51430.1.S1_at | Lj3g3v3487860 | Glyma.04G123300 | Phvul.002G127500 | Myc+/- | Suzaki, T., Takeda, N., Nishida, H., Hoshino, M., Ito, M., Misawa, F., Handa, Y., Miura, K., and Kawaguchi, M. (2019). LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonius. PLoS genetics 15, e1007865. | |||||||||||
96 | MtLAX2 | n/a | Nod+/- | n/a | Roy et al., 2017 | Transporter (Auxin influx) | LIKE-AUX1 (LAX2) | Tnt1 | Medtr7g067450 | Mtr.41246.1.S1_at | Lj0g3v0304149 | Glyma.07G147000 | Phvul.008G106300 | Myc+ | Roy, S., Robson, F., Lilley, J., Liu, C.-W., Cheng, X., Wen, J., Walker, S., Sun, J., Cousins, D., and Bone, C. (2017). MtLAX2, a functional homologue of the Arabidopsis auxin influx transporter AUX1, is required for nodule organogenesis. Plant Physiology 174, 326-338. | |||||||||||
97 | LjLB1/LjLB2/LjLB3 | Inf+ | Nod+ | Fix- | Ott et al., 2005 | Oxygen carrier hemoprotein | LEGHEMOGLOBIN (LB1/LB2/LB3) | RNAi | - | - | Lj5g3v0035290, Lj5g3v0035290, Lj5g3v0465970 | - | - | n/a | Ott, T., van Dongen, J.T., Gu, C., Krusell, L., Desbrosses, G., Vigeolas, H., Bock, V., Czechowski, T., Geigenberger, P., and Udvardi, M.K. (2005). Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Current biology 15, 531-535. | |||||||||||
98 | MtLIN, LjLIN | Inf+/-, Inf* | Nod*, White++ | n/a | Yano et al., 2009; Kiss et al., 2009 | Enzyme (Ligase) | LUMPY InfectionS (LIN) | Ljcerberus | EMS | Medtr1g090320 | - | Lj5g3v1697430 | Glyma.10G194500 | Phvul.007G136300 | Myc+/- | Yano, K., Yoshida, S., Müller, J., Singh, S., Banba, M., Vickers, K., Markmann, K., White, C., Schuller, B., and Sato, S. (2008). CYCLOPS, a mediator of symbiotic intracellular accommodation. Proceedings of the National Academy of Sciences 105, 20540-20545., Kiss, E., Oláh, B., Kaló, P., Morales, M., Heckmann, A.B., Borbola, A., Lózsa, A., Kontár, K., Middleton, P., and Downie, J.A. (2009). LIN, a novel type of U-box/WD40 protein, controls early infection by rhizobia in legumes. Plant physiology 151, 1239-1249. | ||||||||||
99 | LjLNP | Inf- | Nod- | n/a | Roberts et al., 2013 | Enzyme (Hydrolase) | LECTIN NUCLEOTIDE PHOSPHOHYDROLASE (LNP) | Antisense | Medtr7g085150 | Mtr.14668.1.S1_at | Lj1g3v3948070 | Glyma.16G043300 | Phvul.001G099900 | Myc+/- | Roberts, N.J., Morieri, G., Kalsi, G., Rose, A., Stiller, J., Edwards, A., Xie, F., Gresshoff, P.M., Oldroyd, G.E., and Downie, J.A. (2013). Rhizobial and mycorrhizal symbioses in Lotus japonicus require lectin nucleotide phosphohydrolase, which acts upstream of calcium signaling. Plant physiology 161, 556-567. | |||||||||||
100 | MtLOG1 | n/a | Nod+/- | n/a | Mortier et al., 2014 | Enzyme (Hydrolase), cytokinin riboside 5′‐monophosphate phosphoribohydrolases | LONELYGUY1 (LOG1) | RNAi | Medtr0041s0100 | Mtr.39530.1.S1_s_at | Lj1g3v4580630 | Glyma.03G181300 | Phvul.001G177400 | n/a | Mortier, V., Wasson, A., Jaworek, P., De Keyser, A., Decroos, M., Holsters, M., Tarkowski, P., Mathesius, U., and Goormachtig, S. (2014). Role of LONELY GUY genes in indeterminate nodulation on Medicago truncatula. New Phytologist 202, 582-593. |