Oregon 2022 Standards	Course		Primary Unit
(NGSS Performance Expectations)	Embedded In	Unit	Embedded In
HS-PS3-2: Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the			
motions of particles (objects) and energy associated with the relative positions of			
particles (objects)	Chemistry	Unit 1	KMT and Climate Change
HS-ESS3-6. Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to			
human activity.	Chemistry	<u>Unit 1</u>	KMT and Climate Change
HS-PS1-1. Use the periodic table as a model to predict the relative properties of			
elements based on the patterns of electrons in the outermost energy level of atoms.	Chemistry	Unit 2	Atomic Structure and the Periodic Table
HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down	Onemistry	<u>OTITE</u>	Atomic directors and the remode rable
into smaller, more manageable problems that can be solved through engineering.	Chemistry	Unit 2	Atomic Structure and the Periodic Table
HS-ETS1-3. Evaluate a solution to a complex real-world problem based on			
prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and			
environmental impacts.	Chemistry	<u>Unit 2</u>	Atomic Structure and the Periodic Table
HS-PS1-8. Develop models to illustrate the changes in the composition of the			
nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.	Chemistry	Unit 3	Nuclear Chemistry
HS-ESS1-1. Develop a model based on evidence to illustrate the life span of the	Griennen	<u> </u>	Tradical Chemical
sun and the role of nuclear fusion in the sun's core to release energy in the form of			
radiation.	Chemistry	Unit 3	Nuclear Chemistry
HS-ESS1-3. Communicate scientific ideas about the way stars, over their life cycle, produce elements.	Chemistry	Unit 3	Nuclear Chemistry
HS-ESS1-6. Apply scientific reasoning and evidence from ancient Earth materials,	,		
meteorites, and other planetary surfaces to construct an account of Earth's	Ch amaiata :	Limit O	Nuclear Chamietre
formation and early history. (radiometric dating) HS-PS1-3. Plan and conduct an investigation to gather evidence to compare the	Chemistry	Unit 3	Nuclear Chemistry
structure of substances at the bulk scale to infer the strength of electrical forces			
between particles.	Chemistry	<u>Unit 4</u>	Bonding and IMF
HS-PS2-6. Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.	Chemistry	Unit 4	Bonding and IMF
HS-PS1-2. Construct and revise an explanation for the outcome of a simple	Chemistry	OIIIL4	Bonding and livir
chemical reaction based on the outermost electron states of atoms, trends in the			
periodic table, and knowledge of the patterns of chemical properties.	Chemistry	Unit 5	Chemical Reactions
HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs			
and wants.	Chemistry	<u>Unit 5</u>	Chemical Reactions
HS-PS1-7. Use mathematical representations to support the claim that atoms, and			
therefore mass, are conserved during a chemical reaction.	Chemistry	<u>Unit 6</u>	Stoichiometry
HS-PS1-4. Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.	Chemistry	Unit 7	Thermodynamics
HS-PS3-4. Plan and conduct an investigation to provide evidence that the transfer			,
of thermal energy when two components of different temperature are combined			
within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics)	Chemistry	<u>Unit 7</u>	Thermodynamics
HS-PS1-6. Refine the design of a chemical system by specifying a change in			
conditions that would produce increased amounts of products at equilibrium.*	Chemistry	Unit 8	Equilibrium
HS-PS1-5. Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles			
on the rate at which a reaction occurs.	Chemistry	Unit 8	Equilibrium
Unassigned to Units			
HS-ESS3-5. Analyze geoscience data and the results from global climate models			
to make an evidence-based forecast of the current rate of global or regional	01		
climate change and associated future impacts to Earth systems.	Chemistry		Climate change
HS-ESS2-5. Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes.	Chemistry		Bonding
	55.mod y		