| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | AA | AB | AC | AD | AE | AF | AG | AH | AI | AJ | AK | AL | AM | AN | AO | AP | AQ | AR | AS | AT | AU | AV | AW | AX | AY | AZ | BA | BB | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Name | Platform | DOIs | PubDates | Code | Description | License | Assembly | Alignment | UMIs | Quantification | QualityControl | Normalisation | Imputation | Integration | GeneFiltering | Clustering | Classification | Ordering | DifferentialExpression | MarkerGenes | ExpressionPatterns | VariableGenes | GeneSets | GeneNetworks | CellCycle | DimensionalityReduction | Transformation | Modality | AlternativeSplicing | RareCells | StemCells | Immune | Variants | Haplotypes | AlleleSpecific | Visualisation | Interactive | Simulation | Added | Updated | ||||||||||||||
2 | ACTINN | Python | 10.1101/532093;10.1093/bioinformatics/btz592 | PREPRINT;2019-07-29 | https://github.com/mafeiyang/ACTINN | ACTINN (Automated Cell Type Identification using Neural Networks) is a bioinformatic tool to quickly and accurately identify cell types in scRNA-Seq. | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2019-02-01 | 2019-08-05 | |||||||||||||||
3 | ACTION | C++/R/MATLAB | 10.1038/s41467-018-03933-2 | 2018-04-17 | https://github.com/shmohammadi86/ACTION | ACTION infers the functional identity of cells from their transcriptional profile, classifies them based on their dominant function, and reconstructs regulatory networks that are responsible for mediating their identity. | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-04-23 | 2018-04-23 | |||||||||||||||
4 | alevinQC | R | https://github.com/csoneson/alevinQC | Generate QC reports summarizing the output from an alevin run | MIT | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | 2019-05-31 | 2019-05-31 | ||||||||||||||||
5 | ALRA | R | 10.1101/397588 | PREPRINT | https://github.com/KlugerLab/ALRA | ALRA is a method for imputation of missing values in single cell RNA-sequencing data | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-08-31 | 2018-08-31 | |||||||||||||||
6 | AltAnalyze | Python | 10.1038/nature19348;10.1101/412080 | 2016-08-31;PREPRINT | https://github.com/nsalomonis/altanalyze | AltAnalyze is a multi-functional and easy-to-use software package for automated single-cell and bulk gene and splicing analyses. | Apache-2.0 | FALSE | FALSE | FALSE | TRUE | FALSE | TRUE | FALSE | FALSE | TRUE | TRUE | TRUE | FALSE | TRUE | TRUE | FALSE | FALSE | TRUE | TRUE | TRUE | TRUE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | 2017-07-16 | 2018-11-12 | ||||||||||||||
7 | anchor | Python | 10.1016/j.molcel.2017.06.003 | 2017-06-29 | https://github.com/yeolab/anchor | Find bimodal, unimodal, and multimodal features in your data | BSD-3-clause | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2016-09-08 | 2017-07-16 | ||||||||||||||
8 | ASAP | R/Python | 10.1101/096222;10.1093/bioinformatics/btx337 | PREPRINT;2017-10-01 | https://github.com/DeplanckeLab/ASAP | ASAP : Automated Single-cell Analysis Pipeline | GPL-3 | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | 2018-11-12 | 2018-11-12 | ||||||||||||||
9 | ascend | R | 10.1101/207704;10.1093/gigascience/giz087 | PREPRINT;2019-08-24 | https://github.com/powellgenomicslab/ascend | Analysis of Single Cell Expresssion Normalisation and Differential Expression | GPL-3 | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2017-11-20 | 2019-09-23 | ||||||||||||||
10 | AUCell | R | 10.1101/144501;10.1038/nmeth.4463 | PREPRINT;2017-10-09 | https://github.com/aertslab/AUCell | AUCell is an R-package to analyze the state of gene-sets in single-cell RNA-seq data (i.e. identify cells with active gene signatures). | Custom | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | 2017-06-26 | 2018-05-13 | ||||||||||||||
11 | AutoImpute | Python/R | 10.1038/s41598-018-34688-x | 2018-11-05 | https://github.com/divyanshu-talwar/AutoImpute | AutoImpute: Autoencoder based imputation of single cell RNA-seq data | MIT | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-11-09 | 2018-11-09 | ||||||||||||||
12 | BackSPIN | Python | 10.1126/science.aaa1934 | 2015-03-06 | https://github.com/linnarsson-lab/BackSPIN | Biclustering algorithm developed taking into account intrinsic features of single-cell RNA-seq experiments. | BSD-2-clause | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2016-09-08 | 2016-09-08 | ||||||||||||||
13 | badger | R | https://github.com/JEFworks/badger | Bayesian approach for detecting copy number alterations from single cell RNA-seq data | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | FALSE | FALSE | 2017-06-05 | 2017-06-05 | |||||||||||||||||
14 | BALDR | Perl | 10.1186/s13073-018-0528-3 | 2018-03-20 | https://github.com/BosingerLab/BALDR | BALDR is a pipeline for reconstructing human or rhesus macaque immunoglobulin(Ig)/B cell receptor(BCR) sequences from single cell RNA-Seq data generated by Illumina sequencing. | MIT | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-04-04 | 2018-04-04 | ||||||||||||||
15 | BAMMSC | R/C++ | 10.1101/392662;10.1038/s41467-019-09639-3 | PREPRINT;2019-04-09 | https://github.com/CHPGenetics/BAMMSC | A Bayesian mixture model for clustering droplet-based single cell transcriptomic data from population studies | GPL (>= 2) | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-11-12 | 2019-07-11 | ||||||||||||||
16 | BASIC | Python | 10.1093/bioinformatics/btw631 | 2016-09-28 | http://ttic.uchicago.edu/~aakhan/BASIC/ | BASIC is a semi-de novo assembly method to determine the full-length sequence of the BCR in single B cells from scRNA-seq data. | MIT | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2016-10-10 | 2017-09-09 | ||||||||||||||
17 | BASiCS | R | 10.1371/journal.pcbi.1004333;10.1186/s13059-016-0930-3;10.1101/237214;10.1016/j.cels.2018.06.011 | 2015-06-01;2016-04-15;PREPRINT;2018-08-29 | https://github.com/catavallejos/BASiCS | Bayesian Analysis of single-cell RNA-seq data. Estimates cell-specific normalization constants. Technical variability is quantified based on spike-in genes. The total variability of the expression counts is decomposed into technical and biological components. | GPL (>= 2) | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | 2016-09-08 | 2018-08-31 | ||||||||||||||
18 | batchelor | R | 10.1038/nbt.4091 | 2018-04-02 | https://github.com/LTLA/batchelor | Implements a variety of methods for batch correction of single-cell (RNA sequencing) data. | GPL-3 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2019-06-28 | 2019-06-28 | ||||||||||||||
19 | bayNorm | R/C++ | 10.1101/384586 | PREPRINT | https://github.com/WT215/bayNorm | bayNorm provides an efficient, integrated solution for global scaling normalisation, imputation and true count recovery of gene expression measurements from scRNA-seq data | GPL (>= 2) | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | 2018-08-24 | 2018-08-24 | ||||||||||||||
20 | bbknn | Python | 10.1101/397042;10.1093/bioinformatics/btz625 | PREPRINT;2019-08-10 | https://github.com/Teichlab/bbknn | BBKNN is a fast and intuitive batch effect removal tool for direct use in the scanpy workflow. | MIT | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2018-08-24 | 2019-08-19 | ||||||||||||||
21 | BCseq | C | 10.1093/nar/gky308 | 2018-04-30 | http://www-rcf.usc.edu/~liangche/software.html | BCseq: accurate single cell RNA-seq quantification with bias correction | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-05-11 | 2018-05-11 | |||||||||||||||
22 | BEARscc | R | 10.1101/118919 | PREPRINT | https://bitbucket.org/bsblabludwig/bearscc | BEARscc is a noise estimation and injection tool that is designed to assess putative single-cell RNA-seq clusters in the context of experimental noise estimated by ERCC spike-in controls. | GPL-3 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | 2017-04-27 | 2017-04-27 | ||||||||||||||
23 | BEELINE | Python/Docker | 10.1101/642926 | PREPRINT | https://github.com/murali-group/Beeline | BEELINE: Benchmarking gEnE reguLatory network Inference from siNgle-cEll transcriptomic data | GPL-3 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2019-05-23 | 2019-05-23 | ||||||||||||||
24 | BEER | R | 10.1038/s41421-019-0114-x | 2019-09-24 | https://github.com/jumphone/BEER | BEER: Batch EffEct Remover for single-cell data | MIT | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2019-09-30 | 2019-09-30 | ||||||||||||||
25 | bigSCale | MATLAB | 10.1101/197244 | PREPRINT | https://github.com/iaconogi/bigSCale | bigSCale is an analytical framework scalable to analyze millions of cells | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2017-10-29 | 2017-10-29 | |||||||||||||||
26 | bigSCale2 | R/C++ | 10.1101/gr.230771.117;10.1186/s13059-019-1713-4 | 2018-05-03;2019-06-04 | https://github.com/iaconogi/bigSCale2 | bigSCale is a complete framework for the analysis and visualization of single cell data. It allows cluster, phenotype, perform pseudotime analysis, infer gene regulatory networks and reduce large datasets in smaller datasets with higher quality. | GPL (>= 2) | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | TRUE | TRUE | TRUE | FALSE | TRUE | FALSE | TRUE | FALSE | TRUE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2019-07-11 | 2019-07-11 | ||||||||||||||
27 | BIRD | C++/R | 10.1038/s41467-017-01188-x;10.1093/nar/gkz716 | 2017-08-24;2019-08-20 | https://github.com/WeiqiangZhou/BIRD | BIRD: Big data Regression for predicting DNase I hypersensitivity | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2019-08-26 | 2019-08-26 | |||||||||||||||
28 | BISCUIT | R | 10.18547/gcb.2017.vol3.iss1.e46 | 2017-01-26 | https://github.com/sandhya212/BISCUIT_SingleCell_IMM_ICML_2016 | Bayesian Inference for Single-cell Clustering and ImpuTing | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-11-12 | 2018-11-12 | |||||||||||||||
29 | Bisque | R | 10.1101/669911 | PREPRINT | https://github.com/cozygene/bisque | An R toolkit for accurate and efficient estimation of cell composition ('decomposition') from bulk expression data with single-cell information. | GPL-3 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | 2019-06-20 | 2019-06-20 | ||||||||||||||
30 | bonvoyage | Python | 10.1016/j.molcel.2017.06.003 | 2017-06-29 | https://github.com/yeolab/bonvoyage | Transform percentage-based units into a 2d space to evaluate changes in distribution with both magnitude and direction. | BSD-3-clause | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2016-09-08 | 2017-07-16 | ||||||||||||||
31 | BPSC | R | 10.1093/bioinformatics/btw202 | 2016-04-19 | https://github.com/nghiavtr/BPSC | Beta-Poisson model for single-cell RNA-seq data analyses | GPL-3 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2016-09-08 | 2016-09-08 | ||||||||||||||
32 | BraCeR | Python/R | 10.1101/185504;10.1038/s41592-018-0082-3 | PREPRINT;2018-07-31 | https://github.com/teichlab/bracer | BraCeR - reconstruction of B cell receptor sequences from single-cell RNA-seq data. | Apache-2.0 | TRUE | TRUE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2017-09-09 | 2017-08-03 | ||||||||||||||
33 | BranchedGP | Python | 10.1101/166868;10.1186/s13059-018-1440-2 | PREPRINT;2018-05-29 | https://github.com/ManchesterBioinference/BranchedGP | BranchedGP is a package for building Branching Gaussian process models in python, using TensorFlow and GPFlow. | Apache-2.0 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2017-07-20 | 2018-06-08 | ||||||||||||||
34 | BRAPeS | Python | 10.1101/389999 | PREPRINT | https://github.com/YosefLab/BRAPeS | BRAPeS (BCR Reconstruction Algorithm for Paired-End Single-cell), software for reconstruction of B cell receptors (BCR) using short, paired-end single-cell RNA-sequencing. | Custom | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-08-24 | 2018-08-24 | ||||||||||||||
35 | BRIE | Python | 10.1101/098517;10.1186/s13059-017-1248-5 | PREPRINT;2017-06-27 | https://github.com/huangyh09/brie | BRIE (Bayesian regression for isoform estimate) is a Bayesian method to estimate isoform proportions from RNA-seq data. | Apache-2.0 | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2017-01-10 | 2018-03-14 | ||||||||||||||
36 | bseqsc | R | 10.1016/j.cels.2016.08.011 | 2016-10-26 | https://github.com/shenorrLab/bseqsc | BSeq-sc is a bioinformatics analysis pipeline that leverages single-cell sequencing data to estimate cell type proportion and cell type-specific gene expression differences from RNA-seq data from bulk tissue samples. | GPL (>= 2) | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2018-06-27 | 2018-06-27 | ||||||||||||||
37 | BTR | R | 10.1186/s12859-016-1235-y | 2016-09-06 | https://github.com/cheeyeelim/btr | BTR is a model learning algorithm for reconstructing and training asynchronous Boolean models using single-cell expression data. | GPL-3 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2016-09-12 | 2016-09-12 | ||||||||||||||
38 | BUSseq | R/C++ | 10.1101/533372 | PREPRINT | https://github.com/songfd2018/BUSseq | The BUSseq R package implements the BUSseq model to adjust single-cell RNA-sequencing data for batch effects when there are unknown cell types. | GPL (>= 2) | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | TRUE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2019-02-01 | 2019-02-01 | ||||||||||||||
39 | bustools | C++ | 10.1101/472571;10.1101/673285 | PREPRINT;PREPRINT | https://github.com/BUStools/bustools | bustools is a program for manipulating BUS files for single cell RNA-Seq datasets | BSD-2-clause | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-12-01 | 2019-06-20 | ||||||||||||||
40 | CALISTA | MATLAB/R | 10.1101/257550 | PREPRINT | https://github.com/CABSEL/CALISTA | CALISTA provides a user-friendly toolbox for the analysis of single cell expression data. | BSD-3-clause | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | TRUE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2018-03-22 | 2018-03-22 | ||||||||||||||
41 | CancerInSilico | R/C++ | 10.1101/328807 | PREPRINT | https://github.com/FertigLab/CancerInSilico | The CancerInSilico package provides an R interface for running mathematical models of tumor progresson. | GPL-2 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | TRUE | 2018-06-19 | 2018-06-19 | ||||||||||||||
42 | cardelino | R | 10.1101/413047 | PREPRINT | https://github.com/PMBio/cardelino | Methods to infer clonal structure for a population of cells using single-cell RNA-seq data | GPL (>= 3) | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | FALSE | TRUE | 2018-07-18 | 2018-09-14 | ||||||||||||||
43 | CaSTLe | R | 10.1371/journal.pone.0205499 | 2018-10-10 | https://github.com/yuvallb/CaSTLe | Classification of Single cells by Transfer Learning | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-10-29 | 2018-10-29 | |||||||||||||||
44 | cb_sniffer | Python | 10.1101/434746;10.1038/s41467-019-11591-1 | PREPRINT;2019-07-23 | https://github.com/sridnona/cb_sniffer | Mutation barcode caller, calls mutant and ref barcodes from 10x single cell data | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-10-29 | 2019-08-26 | |||||||||||||||
45 | ccfindR | R | 10.26508/lsa.201900443 | 2019-07-02 | https://github.com/hjunwoo/ccfindR | single-cell RNA-seq data analysis using Bayesian non-negative matrix factorization | GPL (>= 2) | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | TRUE | 2018-05-13 | 2019-07-11 | ||||||||||||||
46 | ccRemover | R | arxiv/1605.04492;10.1038/srep33892 | PREPRINT;2016-05-12 | https://github.com/cran/ccRemover | Implements a method for identifying and removing the cell-cycle effect from scRNA-Seq data. | GPL-3 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-04-23 | 2018-04-23 | ||||||||||||||
47 | celaref | R | https://github.com/MonashBioinformaticsPlatform/celaref | The celaref (cell labelling by reference) package aims to streamline the cell-type identification step, by suggesting cluster labels on the basis of similarity to an already-characterised reference dataset. | GPL-3 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2018-06-08 | 2018-06-08 | ||||||||||||||||
48 | celda | R/C++ | https://github.com/campbio/celda | "celda" stands for "CEllular Latent Dirichlet Allocation", which is a suite of Bayesian hierarchical models and supporting functions to perform gene and cell clustering for count data generated by single cell RNA-seq platforms. | MIT | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | TRUE | 2019-01-18 | 2019-01-18 | ||||||||||||||||
49 | Cell-BLAST | Python | 10.1101/587360 | PREPRINT | https://github.com/gao-lab/Cell_BLAST | Cell BLAST is a cell querying tool for single-cell transcriptomics data. | MIT | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2019-04-16 | 2019-04-16 | ||||||||||||||
50 | cellAlign | R/C++ | 10.1038/nmeth.4628 | 2018-03-12 | https://github.com/shenorrLab/cellAlign | CellAlign is a tool for quantitative comparison of expression dynamics within or between single-cell trajectories. | Custom | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2018-03-14 | 2018-03-14 | ||||||||||||||
51 | cellassign | R | 10.1101/521914;10.1038/s41592-019-0529-1 | PREPRINT;2019-09-09 | https://github.com/irrationone/cellassign | cellassign automatically assigns single-cell RNA-seq data to known cell types across thousands of cells accounting for patient and batch specific effects. | Apache-2.0 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | 2019-01-11 | 2019-09-17 | ||||||||||||||
52 | CellBench | R | 10.1101/433102;10.1038/s41592-019-0425-8 | PREPRINT;2019-05-27 | https://github.com/shians/cellbench | R package for benchmarking single cell analysis methods, primarily inspired by the modelling structure used in DSC | GPL-3 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2019-05-31 | 2019-05-31 | ||||||||||||||
53 | CellBIC | MATLAB | 10.1093/nar/gky698 | 2018-08-08 | https://github.com/neocaleb/CellBIC | CellBIC is bimodality-based top-down clustering of single-cell RNA sequencing data. | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-08-17 | 2018-08-17 | |||||||||||||||
54 | cellBrowser | Python | https://github.com/maximilianh/cellBrowser | Python pipeline and Javascript scatter plot library for single-cell datasets | GPL-3 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | 2018-10-02 | 2018-10-02 | ||||||||||||||||
55 | CellFishing | Julia | 10.1101/374462 | PREPRINT | https://github.com/bicycle1885/CellFishing.jl | CellFishing.jl (cell finder via hashing) is a tool to find similar cells of query cells based on their transcriptome expression profiles. | MIT | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-11-12 | 2018-11-12 | ||||||||||||||
56 | Cellity | R | 10.1186/s13059-016-0888-1 | 2016-02-17 | https://github.com/teichlab/cellity | Classification of low quality cells in scRNA-seq data using R | GPL (>= 2) | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2016-09-08 | 2016-09-08 | ||||||||||||||
57 | CellO | Python | 10.1101/634097 | PREPRINT | https://github.com/deweylab/CellO | CellO (Cell Ontology-based classification) is a Python package for performing cell type classification of RNA-seq data. | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2019-05-17 | 2019-05-17 | |||||||||||||||
58 | CellPhoneDB | Python | 10.1038/s41586-018-0698-6;10.1101/680926 | 2018-11-14;PREPRINT | https://github.com/Teichlab/cellphonedb | CellPhoneDB is a publicly available repository of curated receptors, ligands and interactions. | MIT | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2018-11-16 | 2019-06-28 | ||||||||||||||
59 | CellRanger | Python/R | 10.1038/ncomms14049 | 2017-01-16 | https://github.com/10XGenomics/cellranger | Cell Ranger is a set of analysis pipelines that process Chromium single cell 3’ RNA-seq output to align reads, generate gene-cell matrices and perform clustering and gene expression analysis. | FALSE | TRUE | TRUE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | 2017-06-08 | 2018-04-09 | |||||||||||||||
60 | CellRouter | R | 10.1038/s41467-018-03214-y | 2018-03-01 | https://github.com/edroaldo/cellrouter | CellRouter is a multifaceted single-cell analysis platform that identifies complex cell-state transition trajectories by using flow networks to explore the subpopulation structure of multi-dimensional, single-cell omics data. | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | TRUE | FALSE | TRUE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2018-03-14 | 2018-10-02 | |||||||||||||||
61 | CellTrails | R | 10.1016/j.celrep.2018.05.002 | 2018-06-05 | https://github.com/dcellwanger/CellTrails | CellTrails: Inference of Temporal Gene Expression Dynamics of Branching Biological Processes from Single-cell Expression Data | Artistic-2.0 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2018-12-01 | 2018-12-01 | ||||||||||||||
62 | CellTree | R | 10.1186/s12859-016-1175-6 | 2016-08-13 | Cell population analysis and visualization from single cell RNA-seq data using a Latent Dirichlet Allocation model. | Artistic-2.0 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2016-09-08 | 2018-03-15 | |||||||||||||||
63 | CellView | R | 10.1101/123810 | PREPRINT | https://github.com/mohanbolisetty/CellView | A ShinyApp to visualize and explore single cell datasets | MIT | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | 2018-04-17 | 2018-04-17 | ||||||||||||||
64 | cellxgene | Python/Javascript | https://github.com/chanzuckerberg/cellxgene | cellxgene is an interactive data explorer for single-cell transcriptomics datasets, such as those coming from the Human Cell Atlas | MIT | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | 2019-01-11 | 2019-01-11 | ||||||||||||||||
65 | CHETAH | R | 10.1101/558908 | PREPRINT | https://github.com/jdekanter/CHETAH | CHETAH (CHaracterization of cEll Types Aided by Hierarchical clustering): a selective, hierarchical cell type identification method for single-cell RNA sequencing | AGPLv3 | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | 2019-03-01 | 2019-03-01 | ||||||||||||||
66 | CIDR | R | 10.1101/068775;10.1186/s13059-017-1188-0 | PREPRINT;2017-03-28 | https://github.com/VCCRI/CIDR | Ultrafast and accurate clustering through imputation and dimensionality reduction for single-cell RNA-seq data. | GPL (>= 2) | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | 2016-09-09 | 2018-03-14 | ||||||||||||||
67 | CITEseqCount | Python | https://github.com/Hoohm/CITE-seq-Count | A python package that allows to count antibody TAGS from a CITE-seq and/or cell hashing experiment. | MIT | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-08-24 | 2018-08-24 | ||||||||||||||||
68 | Citrus | R | 10.1101/045070;10.1038/s41598-017-13665-w | PREPRINT;2017-10-19 | https://github.com/ChenMengjie/Citrus | A normalization method to remove unwanted variation using both control and target genes. | GPL (>= 2) | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2016-09-09 | 2018-11-13 | ||||||||||||||
69 | clonealign | R | 10.1101/344309;10.1186/s13059-019-1645-z | PREPRINT;2019-03-12 | https://github.com/kieranrcampbell/clonealign | clonealign assigns single-cell RNA-seq expression to cancer clones by mapping RNA-seq to clone-specific copy number profiles | Apache-2.0 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | FALSE | FALSE | 2018-05-01 | 2019-03-15 | ||||||||||||||
70 | clusterExperiment | R | 10.1101/280545 | PREPRINT | https://github.com/epurdom/clusterExperiment | Functions for running and comparing many different clusterings of single-cell sequencing data. Meant to work with SCONE and slingshot. | Artistic-2.0 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2016-09-08 | 2018-03-14 | ||||||||||||||
71 | ClusterMap | R | 10.1101/331330;10.1093/bioinformatics/btz024 | PREPRINT;2019-01-14 | https://github.com/xgaoo/ClusterMap | ClusterMap is an R package to analyze and compare two or more single cell expression datasets | MIT | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2018-11-12 | 2019-02-01 | ||||||||||||||
72 | ClusterMine | R | 10.1101/255711 | PREPRINT | http://www.genemine.org/clustermine.php | ClusterMine is a knowledge-integrated clustering approach to cluster samples based on gene expression profile. | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2017-02-05 | 2017-02-05 | |||||||||||||||
73 | cNMF | Python | 10.7554/eLife.43803 | 2019-07-08 | https://github.com/dylkot/cNMF | Consensus Non-negative Matrix Factorization on single-cell RNA-Seq data | MIT | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2019-07-24 | 2019-07-24 | ||||||||||||||
74 | CNNC | Python | 10.1101/365007 | PREPRINT | https://github.com/xiaoyeye/CNNC | Convolutional neural network co-expression analysis (CNNC) | MIT | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-11-12 | 2018-11-12 | ||||||||||||||
75 | COAC | C++ | 10.1371/journal.pcbi.1006772 | 2019-02-19 | https://github.com/ChengF-Lab/COAC | Component Overlapping Attribute Clustering (COAC) algorithm to perform the localized (subpopulation) gene co-expression network analysis from large-scale scRNA-seq profiles | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2019-02-25 | 2019-02-25 | |||||||||||||||
76 | COMET | Python | 10.1101/655753 | PREPRINT | https://github.com/MSingerLab/COMETSC | COMET: Identifying candidate marker panels from single-cell transcriptomic data | BSD-3-clause | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2019-05-31 | 2019-05-31 | ||||||||||||||
77 | CONICS | R/Python | 10.1093/bioinformatics/bty316 | 2018-04-20 | https://github.com/diazlab/CONICS | CONICS: COpy-Number analysis In single-Cell RNA-Sequencing | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | FALSE | FALSE | 2018-05-01 | 2018-05-01 | |||||||||||||||
78 | Conos | R/C++ | 10.1101/460246;10.1038/s41592-019-0466-z | PREPRINT;2019-07-15 | https://github.com/hms-dbmi/conos | Clustering on Network of Samples | GPL-3 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | TRUE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2018-11-09 | 2019-07-24 | ||||||||||||||
79 | constclust | Pythjon | https://github.com/ivirshup/constclust | Consistent Clusters for scRNA-seq | MIT | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2019-07-24 | 2019-07-24 | ||||||||||||||||
80 | countClust | R | https://github.com/kkdey/CountClust | Clustering and Visualizing RNA-Seq Expression Data using Grade of Membership Models. Fits grade of membership models (GoM, also known as admixture models) to cluster RNA-seq gene expression count data, identifies characteristic genes driving cluster memberships, and provides a visual summary of the cluster memberships. | GPL (>= 2) | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2016-09-12 | 2016-09-12 | ||||||||||||||||
81 | CSHMM | Python | 10.1093/bioinformatics/btz296 | 2019-04-30 | https://github.com/jessica1338/CSHMM-for-time-series-scRNA-Seq | CSHMM accurately infers branching topology in time series data and correctly and continuously assign cells to paths | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2019-05-08 | 2019-05-08 | |||||||||||||||
82 | CSMF | Matlab | 10.1101/272443 | PREPRINT | http://page.amss.ac.cn/shihua.zhang/software.html | CSMF (Common and Specific Matrix Factorization) is a MATLAB package to simultaneously extract common and specific patterns from the data of two or multiple biological interrelated conditions via matrix factorization. | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-03-08 | 2018-03-08 | |||||||||||||||
83 | CSN | MATLAB | 10.1093/nar/gkz172 | 2019-03-13 | https://github.com/wys8c764/CSN | Cell-specific Network Constructed from Single-cell RNA Sequencing Data | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2019-03-25 | 2019-03-25 | |||||||||||||||
84 | cTPnet | R | 10.1101/671180 | PREPRINT | https://github.com/zhouzilu/cTPnet | Single cell Transcriptome to Protein prediction with deep neural networks | GPL-3 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2019-06-20 | 2019-06-20 | ||||||||||||||
85 | Cyclum | Python | 10.1101/625566 | PREPRINT | https://github.com/KChen-lab/cyclum | Cyclum is a package to recover cell cycle information and remove cell cycle factors from scRNA-seq data | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2019-05-07 | 2019-05-07 | |||||||||||||||
86 | D3E | Python | 10.1186/s12859-016-0944-6 | 2016-02-29 | https://github.com/hemberg-lab/D3E | D3E is a tool for identifying differentially-expressed genes, based on single-cell RNA-seq data. D3E consists of two modules: one for identifying differentially expressed (DE) genes, and one for fitting the parameters of a Poisson-Beta distribution. | GPL-3 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2016-09-09 | 2016-09-09 | ||||||||||||||
87 | DCA | Python | 10.1101/300681;10.1038/s41467-018-07931-2 | PREPRINT;2019-01-23 | https://github.com/theislab/dca | A deep count autoencoder network to denoise scRNA-seq data and remove the dropout effect by taking the count structure, overdispersed nature and sparsity of the data into account using a deep autoencoder with zero-inflated negative binomial (ZINB) loss function. | Apache-2.0 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-04-17 | 2019-01-25 | ||||||||||||||
88 | DCA_R | R | 10.1371/journal.pcbi.1006391 | 2018-08-06 | https://github.com/cran/DCA | Finding dominant latent signals that regulate dynamic correlation between many pairs of variables. | GPL-2 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-08-10 | 2018-08-10 | ||||||||||||||
89 | ddSeeker | Python/R | 10.1186/s12864-018-5249-x | 2018-12-24 | https://github.com/cgplab/ddSeeker | A tool for processing Bio-Rad ddSEQ single cell RNA-seq data | GPL-3 | FALSE | FALSE | TRUE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2019-01-06 | 2019-01-06 | ||||||||||||||
90 | DECENT | R | 10.1101/225177;10.1093/bioinformatics/btz453 | PREPRINT;2019-06-14 | https://github.com/cz-ye/DECENT | Differential Expression with Capture Efficiency AdjustmeNT for Single-Cell RNA-seq Data | GPL-3 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2017-12-20 | 2019-06-20 | ||||||||||||||
91 | DECODE | C++/R/MATLAB | 10.1101/241646 | PREPRINT | https://github.com/shmohammadi86/DECODE | DECODE-ing sparsity patterns in single-cell RNA-seq | GPL (>= 2) | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-11-12 | 2018-11-12 | ||||||||||||||
92 | DeepImpute | Python | 10.1101/353607 | PREPRINT | https://github.com/lanagarmire/DeepImpute | DeepImpute: an accurate and efficient deep learning method for single-cell RNA-seq data imputation | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-11-09 | 2018-11-09 | |||||||||||||||
93 | DeLorean | R | 10.1093/bioinformatics/btw372 | 2016-06-17 | https://github.com/JohnReid/DeLorean | R package to model time series accounting for noise in the temporal dimension. Specifically designed for single cell transcriptome experiments. | MIT | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2016-09-09 | 2016-09-09 | ||||||||||||||
94 | demuxlet | C++ | 10.1101/118778;10.1038/nbt.4042 | PREPRINT;2017-12-11 | https://github.com/statgen/demuxlet | Genetic multiplexing of barcoded single cell RNA-seq | Apache-2.0 | FALSE | FALSE | TRUE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | 2017-03-29 | 2018-03-14 | ||||||||||||||
95 | DENDRO | R | 10.1101/457622 | PREPRINT | https://github.com/zhouzilu/DENDRO | DENDRO, stands for Dna based EvolutioNary tree preDiction by scRna-seq technOlogy, is an R package, which takes scRNA-seq data for a tumor (or related somatic tissues) and accurately reconstructs its phylogeny, assigning each single cell from the single cell RNA sequencing (scRNA-seq) data to a subclone. | GPL-3 | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | FALSE | TRUE | 2018-11-14 | 2018-11-14 | ||||||||||||||
96 | DendroSplit | Python | 10.1101/191254 | PREPRINT | https://github.com/jessemzhang/dendrosplit | DendroSplit, an interpretable framework for analyzing single-cell RNA-Seq datasets. | CC-BY-NC-SA | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-01-19 | 2018-01-19 | ||||||||||||||
97 | densityCut | R | 10.1093/bioinformatics/btw227 | 2016-04-23 | https://bitbucket.org/jerry00/densitycut_dev | densityCut is an efficient density-based clustering algorithm to analyze large-scale biological data | GPL (>= 2) | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2018-11-13 | 2018-11-13 | ||||||||||||||
98 | DensityPath | R/Matlab | 10.1101/276311;10.1093/bioinformatics/bty1009 | PREPRINT;2018-12-07 | https://github.com/ucasdp/DensityPath | DensityPath can accurately and efficiently reconstruct the underlying cell developmental trajectories for large-scale scRNAseq data. | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | 2018-03-08 | 2018-12-13 | |||||||||||||||
99 | DepecheR | R | 10.1101/396135 | PREPRINT | https://github.com/Theorell/DepecheR | DepecheR is an R package for clustering cytometry and single-cell RNA sequencing data according to a minimal set of biological markers | MIT | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2018-11-14 | 2018-11-14 | ||||||||||||||
100 | DESC | Python | 10.1101/530378 | PREPRINT | https://github.com/eleozzr/desc | DESC is an unsupervised deep learning algorithm for clustering scRNA-seq data. | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE | TRUE | TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | 2019-02-01 | 2019-02-01 |