ABCDEFGHIJKLMNOPQRSTUVWXYZAAABACADAEAFAGAHAIAJAKAL
1
CitationyearSensory modality: visualauditoryVibrotactileVestibular: motion platformvestibular: leaningotherManipulated modality: visualManipulated modality: auditoryManipulated: VibrotactileManipulated: Vestibular: motion platformManipulated: vestibular: leaningManipulated: Biomechanical: walkingManipulated modality: otherVection direction: linearVection direction: circularVection direction: curvilinearDOFvection measureMultisensory contribution to vection [from manipulated variable]commentsfull citation
2
Adhikari et al., 20212021xxxxforward, yaw, pitchsensation of self-motionenhancementHeadjoystick +visusls > gamepad + visuals in flying navigational search task
Adhikari, A., Hashemian, A. M., Nguyen-Vo, T., Kruijff, E., Heyde, M. von der, & Riecke, B. E. (2021). Lean to Fly: Leaning-Based Embodied Flying can Improve Performance and User Experience in 3D Navigation. Frontiers in Virtual Reality, 2, 1–22. doi:10.3389/frvir.2021.730334
3
Amemiya et al. 2013 exp 12013xxxfront-backpercevied self-motion velocity
enhancement in some conditions
visual + vibrotactile > visual-only* when visual motion is fast
Amemiya, T., K. Hirota, and Y. Ikei. 2013. “Tactile Flow on Seat Pan Modulates Perceived Forward Velocity.” Pp. 71–77 in 2013 IEEE Symposium on 3D User Interfaces (3DUI).
4
Amemiya et al. 2013 exp 22013xxxfront-backpercevied self-motion velocityno effectTactile apparent motion on a seat pan did not facilitate the perceived forward velocity
Amemiya, T., K. Hirota, and Y. Ikei. 2013. “Tactile Flow on Seat Pan Modulates Perceived Forward Velocity.” Pp. 71–77 in 2013 IEEE Symposium on 3D User Interfaces (3DUI).
5
Amemiya et al. 20162016xxxfront-backpercevied velocity
enhancement in some conditions
visuals + vibrations > visuals-only *when visual & vibrations are fast
Amemiya, T., Hirota, K., & Ikei, Y. (2016). Tactile Apparent Motion on the Torso Modulates Perceived Forward Self-Motion Velocity. IEEE Transactions on Haptics, 9(4), 474–482. https://doi.org/10.1109/TOH.2016.2598332
6
Aruga et al., 20192019xxolfactoryxfront-backintensityno effectsmell didn't infleunce vection :not on graph
Aruga, A., Bannai, Y., & Seno, T. (2019). Investigation of the Influence of Scent on Self-Motion Feeling by Vection. 9.
7
Ash et al. 20112011xactive head oscillationsxfront-backintensity
enhancement in some conditions
visuals + head movements > visuals (head stationary) * when visual display oscillation is inphase with head movements
Ash, A., Palmisano, S., & Kim, J. (2011). Vection in depth during consistent and inconsistent multisensory stimulation. Perception, 40(2), 155–174. https://doi.org/10.1068/p6837
8
Ash et al. 20132013xxxfront-backintensityreductionvisual-only > visual + walking
Ash, A., Palmisano, S., Apthorp, D., & Allison, R. S. (2013). Vection in Depth during Treadmill Walking. Perception, 42(5), 562–576. https://doi.org/10.1068/p7449
9
Bles, 19811981xxxxyawmagnitude estimates of CVno effectvisual-only = visual + motion = visual + stepping = visual + motion + stepping
Bles, W. (1981). Stepping around: Circular vection and Coriolis effects. In J. Long & A. Baddeley (Eds.), Attention and performance IX (pp. 47–61). Erlbaum, Hillsdale, NJ.
10
Colley et al.,20212021xtactile- forcefeedbackxxfront-back, curvesvection strengthbenefitvisual +force > visual-only
Colley, M., Jansen, P., Rukzio, E., & Gugenheimer, J. (2022). SwiVR-Car-Seat: Exploring Vehicle Motion Effects on Interaction Quality in Virtual Reality Automated Driving Using a Motorized Swivel Seat. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(4), 150:1-150:26. https://doi.org/10.1145/3494968
11
Costes et al., 20222022xtactile- forcefeedbackxfront-backrelative motionbenefitvisual +force > visual-only
Costes, A., & Lécuyer, A. (2022). The “Kinesthetic HMD”: Inducing Self-Motion Sensations in Immersive Virtual Reality With Head-Based Force Feedback. Frontiers in Virtual Reality, 3. https://www.frontiersin.org/articles/10.3389/frvir.2022.838720
12
Cress et al., 19971997x
electrical vestibular stimulation
xroll intensity
enhancement in some conditions
visuals + EVS > visuals-only*when visuals depict roll motion (not lateral) :did not include on graph
Cress, J. D., Hettinger, L. J., Cunningham, J. A., Riccio, G. E., Haas, M. W., & McMillan, G. R. (1997). Integrating vestibular displays for VE and airborne applications. IEEE Computer Graphics and Applications, 17(6), 46–52. https://doi.org/10.1109/38.626969
13
D'amour et al., 20172017xxtactile- windxxintensity, durationdisadvantagevisuals-only > visuals +wind, visual-only > visual+vibrations, Visual-only > wind+vibrations
D’Amour, S., Bos, J. E., & Keshavarz, B. (2017). The efficacy of airflow and seat vibration on reducing visually induced motion sickness. Experimental Brain Research, 235, 2811–2820. https://doi.org/10.1007/s00221-017-5009-1
14
Danieau et al., 20122012xxtactile - forcefeedbackxxstrength of self-motionbenefitvisual +auditory + force > visual + auditory
Danieau, F., Fleureau, J., Cabec, A., Kerbiriou, P., Guillotel, P., Mollet, N., Christie, M., & Lécuyer, A. (2012). Framework for enhancing video viewing experience with haptic effects of motion. 2012 IEEE Haptics Symposium (HAPTICS), 541–546. https://doi.org/10.1109/HAPTIC.2012.6183844
15
Farkhatdinov et al., 20132013xxxfront-backintensity, onset latency
enhancement in some conditions
visuals + vibrations > visuals -only * when vibrations are sinusodial pattern (not pink noise)
Farkhatdinov, I., Ouarti, N., & Hayward, V. (2013). Vibrotactile inputs to the feet can modulate vection. World Haptics Conference (WHC), 2013, 677–681. https://doi.org/10.1109/WHC.2013.6548490
16
Feng et al., 20162016xxxtactile - windxsesnsation of movement (1-6)
enhancement in some conditions
visuals + movement wind > visuals
Feng, M., Dey, A., & Lindeman, R. W. (2016). An initial exploration of a multi-sensory design space: Tactile support for walking in immersive virtual environments. 2016 IEEE Symposium on 3D User Interfaces (3DUI), 95–104. https://doi.org/10.1109/3DUI.2016.7460037
17
Freiberg et al., 20132013xxxyawintensity, convincingnessenhancementvisual + biomechanical > visual-only
Freiberg, J., Grechkin, T., & Riecke, B. E. (2013). Do walking motions enhance visually induced self-motion illusions in virtual reality? IEEE Virtual Reality.
18
Harrison et al., 20102010xxxyawperceveid self-motion enhancementvisuals + auditory > auditory-only : not on graph
Harrison, W. J., Thompson, M. B., & Sanderson, P. M. (2010). Multisensory Integration With a Head-Mounted Display: Background Visual Motion and Sound Motion. Human Factors: The Journal of the Human Factors and Ergonomics Society, 52(1), 78–91. https://doi.org/10.1177/0018720810367790
19
Hashemian & Riecke, 20172017xxxfront-back, lateralintensityno effectvisuals + joystick = visuals + navichair, visuals + real motions, visuals + swivel chair
Hashemian, A. M., & Riecke, B. E. (2017). Leaning-Based 360° Interfaces: Investigating Virtual Reality Navigation Interfaces with Leaning-Based-Translation and Full-Rotation. In S. Lackey & J. Chen (Eds.), Virtual, Augmented and Mixed Reality (VAMR 2017) (Vol. 10280, pp. 15–32). Springer. https://doi.org/10.1007/978-3-319-57987-0_2
20
Hashemian et al., 20202020xxxforward, yaw, pitchintensityenhancementvisuals + Headjoystick increased vection intensity compared to visuals + controller
Hashemian, A., Lotfaliei, M., Adhikari, A., Kruijff, E., & Riecke, B. E. (2020). HeadJoystick: Improving Flying in VR using a Novel Leaning-Based Interface. IEEE Transactions on Visualization and Computer Graphics, 1–18. https://doi.org/10.1109/TVCG.2020.3025084
21
Hashemian et al., 2021 exp 22021xxxxforward, yaw intensityenhancementvisuals + Headjoystick > hand-held controller + visuals
Hashemian, A. M., Adhikari, A., Kruijff, E., Heyde, M. von der, & Riecke, B. E. (2021). Leaning-based interfaces improve ground-based VR locomotion in reach-the-target, follow-the-path, and racing tasks. IEEE Transaction on visualization and computer graphics TVCG, 1–22. doi:10.1109/TVCG.2021.3131422
22
Hashemian et al., 2021 exp 32021xxxxforward, yaw intensityno effectvisuals + Headjoystick = hand-held controller + visuals
Hashemian, A. M., Adhikari, A., Kruijff, E., Heyde, M. von der, & Riecke, B. E. (2021). Leaning-based interfaces improve ground-based VR locomotion in reach-the-target, follow-the-path, and racing tasks. IEEE Transaction on visualization and computer graphics TVCG, 1–22. doi:10.1109/TVCG.2021.3131422
23
Hashemian et al., 2021 exp12021xxxxforward, yaw intensityenhancementvisuals + Headjoystick > hand-held controller + visuals
Hashemian, A. M., Adhikari, A., Kruijff, E., Heyde, M. von der, & Riecke, B. E. (2021). Leaning-based interfaces improve ground-based VR locomotion in reach-the-target, follow-the-path, and racing tasks. IEEE Transaction on visualization and computer graphics TVCG, 1–22. doi:10.1109/TVCG.2021.3131422
24
Hashemian et al., 20232023xxxxforward, yaw intensity
enhancement in some conditions
Standing leaning (NaviBoard) + visuals > gamepad + visuals, but headjoystick was not.
Hashemian, A. M., Adhikari, A., Aguilar, I. A., Kruijff, E., von der Heyde, M., & Riecke, B. E. (2023). Leaning-Based Interfaces Improve Simultaneous Locomotion and Object Interaction in VR Compared to the Handheld Controller. IEEE Transactions on Visualization and Computer Graphics (accepted), 1-17.
25
Hayashizaki et al., 20152015xxxfront-back intensityenhancementvisuals + vibrations > visual-only
Hayashizaki, T., Fujita, A., Nozawa, J., Ueda, S., Hirota, K., Ikei, Y., & Kitazaki, M. (2015). Walking Experience by Real-scene Optic Flow with Synchronized Vibrations on Feet. Proceedings of the 6th Augmented Human International Conference, 183–184. https://doi.org/10.1145/2735711.2735803
26
Horie et al., 20182018xtactile - skin stretchpercevied acceleration
enhancement in some conditions
skin stretch +visuals > visuals*to a certain degree
Horie, Arata, Hikaru Nagano, Masashi Konyo, and Satoshi Tadokoro. 2018. “Buttock Skin Stretch: Inducing Shear Force Perception and Acceleration Illusion on Self-Motion Perception.” Pp. 135–47 in Haptics: Science, Technology, and Applications, Lecture Notes in Computer Science, edited by D. Prattichizzo, H. Shinoda, H. Z. Tan, E. Ruffaldi, and A. Frisoli. Cham: Springer International Publishing.
27
Keshavarz & Hecht, 20122012xxxxxup-down, left-rightfrequency of vectionno effectvisuals +auditory = visuals-only
Keshavarz, Behrang, and Heiko Hecht. 2012. “Stereoscopic Viewing Enhances Visually Induced Motion Sickness but Sound Does Not.” Presence 21(2):213–28.
28
Keshavarz & Hecht, 20122012xxxxxfront-back, lateralfrequencyno effectvisuals + auditory= visual-only
Keshavarz, B., & Hecht, H. (2012). Visually induced motion sickness and presence in videogames: The role of sound. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 56(1), 1763–1767. https://doi.org/10.1177/1071181312561354
29
Keshavarz et al., 20142014xxxyawonset latency, intensityenhancementvisual + auditory > visual -only, auditory-only
Keshavarz, B., Hettinger, L. J., Kennedy, R. S., & Campos, J. L. (2014). Demonstrating the Potential for Dynamic Auditory Stimulation to Contribute to Motion Sickness. PLoS ONE, 9(7), e101016. https://doi.org/10.1371/journal.pone.0101016
30
Keshavarz et al., 20142014xxxyawonset latency, intensityenhancement visual + auditory > visual -only, auditory-only
Keshavarz, B., Hettinger, L. J., Vena, D., & Campos, J. L. (2014). Combined effects of auditory and visual cues on the perception of vection. Experimental Brain Research, 232(3), 827–836. https://doi.org/10.1007/s00221-013-3793-9
31
Keshavarz et al., 20182018xxxxxxfront-back, lateral, yawintensity, durationno effect/reduction
vection duration was shortest in the trimodal condition, vection intenstiy did not change across sensory conditions
Keshavarz, B., Ramkhalawansingh, R., Haycock, B., Shahab, S., & Campos, J. L. (2018). Comparing simulator sickness in younger and older adults during simulated driving under different multisensory conditions. Transportation Research Part F: Traffic Psychology and Behaviour, 54, 47–62. https://doi.org/10.1016/j.trf.2018.01.007
32
Kim & Palmisano, 20082008xactive head oscillationsxfront-backintensity, perceived speedno effectvisuals +head movements = visuals
Kim, J., & Palmisano, S. (2008). Effects of active and passive viewpoint jitter on vection in depth. Brain Research Bulletin, 77(6), 335–342. https://doi.org/10.1016/j.brainresbull.2008.09.011
33
Kim et al.,20152015xactive head oscillationsxfront-backintensityreductionvisuals > visuals + head movements
Kim, J., Chung, C. Y. L., Nakamura, S., Palmisano, S., & Khuu, S. K. (2015). The Oculus Rift: A cost-effective tool for studying visual-vestibular interactions in self-motion perception. Perception Science, 6, 248. https://doi.org/10.3389/fpsyg.2015.00248
34
Kitazaki et al., 20102010xxxfront-backonset latency
enhancement in some conditions
visual + biomechanical > visual-only*when direction of radial flow was opposite (backward) to direction of walking (forward)
Kitazaki, M., Onimaru, S., & Sato, T. (2010). Vection and Action are Incompatible. 22–23.
35
Kitazaki et al., 20162016xxxfront-backintensityenhancementviaual + vibrations > visual-only
Kitazaki, M., Hirota, K., & Ikei, Y. (2016). Minimal Virtual Reality System for Virtual Walking in a Real Scene. In S. Yamamoto (Ed.), Human Interface and the Management of Information: Information, Design and Interaction (pp. 501–510). Springer International Publishing. https://doi.org/10.1007/978-3-319-40349-6_48
36
Kitazaki et al., 20192019xxxfront-backintensity
enhancement in some conditions
visual + vibrations > visual-only *when vibrations were sync with visual
Kitazaki, M., Hamada, T., Yoshiho, K., Kondo, R., Amemiya, T., Hirota, K., & Ikei, Y. (2019). Virtual Walking Sensation by Prerecorded Oscillating Optic Flow and Synchronous Foot Vibration. I-Perception, 10(5), 2041669519882448. https://doi.org/10.1177/2041669519882448
37
Kitson et al., 20172017xxxxxyaw, front-backsensation of self-motionno effect
visuals + joystick = visuals + navichair, visuals + Muvman, visuals + head-directed, visuals + swivel chair
Kitson, A., Hashemian, A. M., Stepanova, E. R., Kruijff, E., & Riecke, B. E. (2017). Comparing Leaning-Based Motion Cueing Interfaces for Virtual Reality Locomotion. Proceedings of IEEE Symposium on 3D User Interfaces 3DUI, 73–82. https://doi.org/10.1109/3DUI.2017.7893320
38
Koge et al., 20152015xxxup-downintensityenhancementvisual + motion > visual-only
Koge, M., Hachisu, T., & Kajimoto, H. (2015). VisuaLift Studio: Study on motion platform using elevator. 2015 IEEE Symposium on 3D User Interfaces (3DUI), 167–168. https://doi.org/10.1109/3DUI.2015.7131753
39
Kooijman et al., 20232023xxxxxroll intensity, convincingnessdisadvantagevisual+audio > visual+audio+vibrations
Kooijman, L., Asadi, H., Arango, C. G., Mohamed, S., & Nahavandi, S. (2023). Investigating the influence of neck muscle vibration on illusory self-motion in virtual reality. PsyArXiv. https://doi.org/10.31234/osf.io/853ch
40
Kruijff et al., 2015 exp12015xxxfront-backintensityno effectvisuals + sitting upright = visuals + static leaning on angle
Kruijff, Ernst, Bernhard E. Riecke, Christina Trepkowski, and A. Kitson. 2015. “Upper Body Leaning Can Affect Forward Self-Motion Perception in Virtual Environments.” Pp. 103–12 in. Los Angeles, CA, USA: ACM.
41
Kruijff et al., 2015 exp32015xxxfront-backvection realism
enhancement in some conditions
visuals + static leaning on angle > visuals + upright *at faster velocities
Kruijff, Ernst, Bernhard E. Riecke, Christina Trepkowski, and A. Kitson. 2015. “Upper Body Leaning Can Affect Forward Self-Motion Perception in Virtual Environments.” Pp. 103–12 in. Los Angeles, CA, USA: ACM.
42
Kruijff et al., 2015 exp42015xxxfront-backvection realism, intensityno effectvisuals + dynamic leaning on angles = visuals
Kruijff, Ernst, Bernhard E. Riecke, Christina Trepkowski, and A. Kitson. 2015. “Upper Body Leaning Can Affect Forward Self-Motion Perception in Virtual Environments.” Pp. 103–12 in. Los Angeles, CA, USA: ACM.
43
Kruijff et al., 2016 session 22016xxxxxyawintensityenhancementvisuals + leaning + audio + vibrations > visuals + leaning
Kruijff, Ernst, Alexander Marquardt, Christina Trepkowski, Robert W. Lindeman, Andre Hinkenjann, Jens Maiero, and Bernhard E. Riecke. 2016. “On Your Feet!: Enhancing Vection in Leaning-Based Interfaces through Multisensory Stimuli.” Pp. 149–58 in Proceedings of the 2016 Symposium on Spatial User Interaction. Tokyo Japan: ACM.
44
Kruijff et al., 2016 session 32016xxxxxyawintensityenhancementvisuals + leaning + audio + vibrations > visuals + joystick
Kruijff, Ernst, Alexander Marquardt, Christina Trepkowski, Robert W. Lindeman, Andre Hinkenjann, Jens Maiero, and Bernhard E. Riecke. 2016. “On Your Feet!: Enhancing Vection in Leaning-Based Interfaces through Multisensory Stimuli.” Pp. 149–58 in Proceedings of the 2016 Symposium on Spatial User Interaction. Tokyo Japan: ACM.
45
Kruijff et al., 2016 session 52016xxxintensityenhancementvisuals + audio + vibrations > visuals
Kruijff, Ernst, Alexander Marquardt, Christina Trepkowski, Robert W. Lindeman, Andre Hinkenjann, Jens Maiero, and Bernhard E. Riecke. 2016. “On Your Feet!: Enhancing Vection in Leaning-Based Interfaces through Multisensory Stimuli.” Pp. 149–58 in Proceedings of the 2016 Symposium on Spatial User Interaction. Tokyo Japan: ACM.
46
Lackner & DiZio, 19831983biomechanical -steppingsliding touchxyawcompellingnessenhancementstepping + sliding touch > stepping-only
Lackner, James, and P. Dizio. 1983. “Some Efferent and Somatosensory Influences on Body Orientation and Oculomotor Control.” Pp. 281–301 in Sensory Experience, Adaptation and Perception. Psychology Press.
47
Lind et al., 20162016xxxxxxfront-back, lateralcompellingness
enhancement in some conditions
visual + auditory +lean + vibrations > visual-auditory-lean * when vibrations were static
Lind, Stine, Lui Thomsen, Mie Egeberg, Niels Nilsson, Rolf Nordahl, and Stefania Serafin. 2016. “Effects of Vibrotactile Stimulation During Virtual Sandboarding.” IEEE Virtual Real. 219–20. doi: during virtual sandboarding. 2016 IEEE Virtual Reality (VR), 219–220. https://doi.org/10.1109/VR.2016.7504732.
48
Liu et al., 20222022xxxxforward, yaw, pitchsensation of self-motionno effectvisuals + Headjoystick = visuals + hand controller
Liu, P., Stepanova, E. R., Kitson, A. J., Schiphorst, T., & Riecke, B. E. (2022). Virtual Transcendent Dream: Empowering People through Embodied Flying in Virtual Reality. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1–18). Presented at the CHI Conference on Human Factors in Computing Systems, New Orleans: ACM. doi:10.1145/3491102.3517677
49
Luu et al., 20212021xhead movementsxfront-backintensityno effectvisuals-only = visuals + head oscillations
Luu, W., Zangerl, B., Kalloniatis, M., Palmisano, S., & Kim, J. (2021). Vision Impairment Provides New Insight Into Self-Motion Perception. Investigative Ophthalmology & Visual Science, 62(2), 4. https://doi.org/10.1167/iovs.62.2.4
50
Maeda et al., 20052005xGVSxup-down, lateralintensity
enhancement in some conditions
visuals + GVS > visual-only *when GVS was anti-phase: did not include on graph
Maeda, T., H. Ando, and M. Sugimoto. 2005. “Virtual Acceleration with Galvanic Vestibular Stimulation in a Virtual Reality Environment.” Pp. 289–90 in IEEE Proceedings. VR 2005. Virtual Reality, 2005.
51
Melcher & Henn, 19811981xxxyawonset latencyenhancement visual + turtable motion > visual-only, turntable-only
Melcher, G. A., and V. Henn. 1981. “The Latency of Circular Vection during Different Accelerations of the Optokinetic Stimulus.” Perception & Psychophysics 30(6):552–56. doi: 10.3758/BF03202009.
52
Mori & Seno, 20182018xtactile - graspingxfront-backintensityreductionvisual -only > visual+ grasping
Mori, Masaki, and Takeharu Seno. 2018. “Inhibition of Vection by Grasping an Object.” Experimental Brain Research 236(12):3215–21. doi: 10.1007/s00221-018-5375-3.
53
Murata et al., 20142014xtactile - windxfront-back, lateralintensity
enhancement in some conditions
body sway + wind > sway-only * more pronounced for certain directions of wind
Murata, Kayoko, Takeharu Seno, Yoko Ozawa, and Shigeru Ichihara. 2014. “Self-Motion Perception Induced by Cutaneous Sensation Caused by Constant Wind.” Psychology 05(15):1777–82. doi: 10.4236/psych.2014.515184.
54
Murovec et al., 20212021xxtactile - sliding touchxyawintensity, durationenhancementadding auditory and tactile increased vection
Murovec, Brandy, Julia Spaniol, Jennifer Campos, and Behrang Keshavarz. 2021. “Multisensory Effects on Illusory Self-Motion (Vection): The Role of Visual, Auditory, and Tactile Cues.” Multisensory Research 1(aop):1–22. doi: 10.1163/22134808-bja10058.
55
Murovec et al., 20222022xxtactile - sliding touchxyawintensity, durationenhancementadding auditory and tactile increased vection
Murovec, B., Spaniol, J., Campos, J. L., & Keshavarz, B. (2022). Enhanced vection in older adults: Evidence for age-related effects in multisensory vection experiences. Perception, 1–17. https://doi.org/10.1177/03010066221113770
56
Nilsson et al., 20122012xxxxlateralintensity
enhancement in some conditions
visual + audiohaptic > audiohaptic * when visual was a train: not on graph
Nilsson, Niels C., Rolf Nordahl, Erik Sikström, Luca Turchet, and Stefania Serafin. 2012. “Haptically Induced Illusory Self-Motion and the Influence of Context of Motion.” Pp. 349–60 in Haptics: Perception, Devices, Mobility, and Communication, Lecture Notes in Computer Science, edited by P. Isokoski and J. Springare. Berlin, Heidelberg: Springer.
57
Nishimura et al., 20142014xhypobaric hypoxiaxfront-backintensity, duration, onset latencyreductionvisuals-only > visuals + hypobaric hypoxia: did not include on graph
Nishimura, Takayuki, Takeharu Seno, Midori Motoi, and Shigeki Watanuki. 2014. “Illusory Self-Motion (Vection) May Be Inhibited by Hypobaric Hypoxia.” Aviation, Space, and Environmental Medicine 85(5):504–8. doi: 10.3357/ASEM.3812.2014.
58
Nordahl et al., 20122012xxxxup-downintensity, compellingness
enhancement in some conditions
visual + vibrations > visual-only *when vibrations are sawtooth pattern
Nordahl, Rolf, Niels C. Nilsson, Luca Turchet, and Stefania Serafin. 2012. “Vertical Illusory Self-Motion through Haptic Stimulation of the Feet.” Pp. 21–26 in 2012 IEEE VR Workshop on Perceptual Illusions in Virtual Environments. Costa Mesa, CA, USA: IEEE.
59
Ogawa et al., 20112011xtactile - windxfront-backintensity, duration, onset latency
enhancement in some conditions
visual +wind >visual-only * when visual motion was expansion
Ogawa, Masaki, Takeharu Seno, Hiroyuki Ito, and Shoji Sunaga. 2011. “Consistent Wind Facilitates Vection.” I-Perception 2(8):868–868. doi: 10.1068/ic868.
60
Oishi et al., 20162016xtactile - pulling clothesxfront-backsense of movementno effectvisual = visual + tactile
Oishi, Erika, Masahiro Koge, Sugarragchaa Khurelbaatar, and Hiroyuki Kajimoto. 2016. “Enhancement of Motion Sensation by Pulling Clothes.” Pp. 47–50 in Proceedings of the 2016 Symposium on Spatial User Interaction, SUI ’16. New York, NY, USA: Association for Computing Machinery.
61
Ouarti et al., 20142014xtactile - forcefeedbackxup-downfrequency, durationenhancementvisual + haptic > visual-only
Ouarti, Nizar, Anatole Lecuyer, and Alain Berthoz. 2014. “Haptic Motion: Improving Sensation of Self-Motion in Virtual Worlds with Force Feedback.” Pp. 167–74 in. Houston, TX, USA: IEEE.
62
Ramkhalawansingh et al., 2016
2016xxxxxfront-back, lateralintensityno effectvisual + auditory = visual-only
Ramkhalawansingh, Robert, Behrang Keshavarz, Bruce Haycock, Saba Shahab, and Jennifer Campos. 2016. “Age Differences in Visual-Auditory Self-Motion Perception during a Simulated Driving Task.” Frontiers in Psychology 7. doi: 10.3389/fpsyg.2016.00595.
63
Rampendahl et al., 20192019xxxfront-backperceived self-motion
enhancement in some conditions
visual + auditory > visual-only * when sound was mono (not stereo or spatial)
Rampendahl, Henrik, Stefan M. Grünvogel, and Arnulph Fuhrmann. 2019. “The Influence of Different Audio Representations on Linear Visually Induced Self-Motion.” Pp. 1–12 in Virtuelle und Erweiterte Realität - 16. Workshop der GI-Fachgruppe VR/AR. Fulda, Germany.
64
Riecke & Feuereissen, 20122012xxxxxfront-back, lateral, yawintensity
enhancement in some conditions
visuals+ audio + chair motion (leaning and passive movement) > visual + audio*at lower velocties
Riecke, B. E., & Feuereissen, D. (2012). To move or not to move: Can active control and user-driven motion cueing enhance self-motion perception (“vection”) in virtual reality? Proceedings of the ACM Symposium on Applied Perception, 17–24. https://doi.org/10.1145/2338676.2338680
65
Riecke et al., 20052005xxxyawintensityenhancementauditory + vibration > auditory-only
Riecke, B. E., Västfjäll, D., & Schulte-pelkum, J. (2005, January 1). Top-Down and Multi-Modal Influences on Self-Motion Perception in Virtual Reality. Proceedings of HCI International.
66
Riecke et al., 20052005xxxyawconvincingness, onset latency
enhancement in some conditions
visual +auditory > visual-only * when sound is spatialized (not mono)
Riecke, B. E., Schulte-Pelkum, J., Caniard, F., & Bülthoff, H. H. (2005). Influence of Auditory Cues on the visually-induced Self-Motion Illusion (Circular Vection) in Virtual Reality. 49–57. http://www0.cs.ucl.ac.uk/research/vr/Projects/Presencia/Presence2005/presence2005.pdf
67
Riecke et al., 2005 exp 32005xxxyawonset latency, convincingnessenhancementvisuals + vibrations > visual-only
Riecke, B. E., Schulte-Pelkum, J., Caniard, F., & Bulthoff, H. H. (2005). Towards lean and elegant self-motion simulation in virtual reality. Virtual Reality, 2005. Proceedings. VR 2005. IEEE, 131–138. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1492765
68
Riecke et al., 2005 exp 42005xxxyawbuild-up time, convincingnessenhancementvisuals + auditory > visual-only
Riecke, B. E., Schulte-Pelkum, J., Caniard, F., & Bulthoff, H. H. (2005). Towards lean and elegant self-motion simulation in virtual reality. Virtual Reality, 2005. Proceedings. VR 2005. IEEE, 131–138. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1492765
69
Riecke et al., 20092009xxxyawonset latency, intensityenhancementauditory + vibration > auditory-only
Riecke, B. E., Feuereissen, D., & Rieser, J. J. (2009). Auditory self-motion simulation is facilitated by haptic and vibrational cues suggesting the possibility of actual motion. ACM Transactions on Applied Perception, 6(3), 20:1-20:22. https://doi.org/10.1145/1577755.1577763
70
Riecke et al., 20092009xxxyawbuild-up time, convincingness
enhancement in some conditions
visual + auditory > visual-only* when sound is spatialized
Riecke, B. E., Väljamäe, A., & Schulte-Pelkum, J. (2009). Moving sounds enhance the visually-induced self-motion illusion (circular vection) in virtual reality. ACM Transactions on Applied Perception, 6(2), 1–27. https://doi.org/10.1145/1498700.1498701
71
Riecke et al., 20102010biomechanicalxxyawintensity
enhancement in some conditions
stepping + spatialized sound > stepping + masked auditory
Riecke, B. E., Feuereissen, D., & Rieser, J. J. (2010). Spatialized sound influences biomechanical self-motion illusion (“vection”). Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization - APGV ’10, 158. https://doi.org/10.1145/1836248.1836280
72
Riecke et al., 20112011xxxyawintenisty, realism enhancementauditory + biomechanical > biomechanical-only
Riecke, B. E., Feuereissen, D., Rieser, J., & McNamara, T. (2011). Spatialized sound enhances biomechanically-induced self-motion illusion (vection). In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (p. 2802). https://doi.org/10.1145/1978942.1979356
73
Riecke et al., 20152015xxxyawintensityenhancementvisual + biomechanical > visual-only
Riecke, B. E., Freiberg, J., & Grechkin, T. Y. (2015). Can Walking Motions Improve Visually Induced Rotational Self-Motion Illusions in Virtual Reality? Journal of Vision, 15(2), 1–15. https://doi.org/10.1167/15.2.3
74
Riecke et al., 20162016xxxfront-backintensityenhancementvisuals + seated leaning > visuals + joystick
Riecke, B. E., Trepkowski, C., & Kruijff, E. (2016). “Human Joystick”: Enhancing Self-Motion Perception (Linear Vection) by using Upper Body Leaning for Gaming and Virtual Reality. ISpaceLab Technical Report, 2016(1), 1–12.
75
Riecke, 20062006xvestibular (motion cueing)xxfront-back, lateral, yawintensity, duration, onset latencyenhancementvisuals + modified wheelchair > visuals + mouse, visuals + joystick
Riecke, Bernhard E. 2006. “Simple User-Generated Motion Cueing Can Enhance Self-Motion Perception (Vection) in Virtual Reality.” P. 104 in Proceedings of the ACM symposium on Virtual reality software and technology - VRST ’06. Limassol, Cyprus: ACM Press.
76
Rietzler et al., 20182018xtactile - forcefeedbackxfront-backvection strengthbenefitvisual + force > visual-only
Rietzler, M., Hirzle, T., Gugenheimer, J., Frommel, J., Dreja, T., & Rukzio, E. (2018). VRSpinning: Exploring the Design Space of a 1D Rotation Platform to Increase the Perception of Self-Motion in VR. Proceedings of the 2018 Designing Interactive Systems Conference, 99–108. https://doi.org/10.1145/3196709.3196755
77
Rupert & Kolev, 20082008xxxyawperceived velocityreductionParticipants noted a decease in percevied velocity when tactile stimulus was applied
Rupert, A., & Kolev, O. (2008). The Use of Tactile Cues to Modify the Perception of Self-Motion. Technical Report ADA505849.
78
Sasaki et al., 20122012xxxup-downonset latency, duration, intensity
enhancement in some conditions
visuals + auditory > visual-only * when visual motion was upward and sounds were postitive
Sasaki, K., Seno, T., Yamada, Y., & Miura, K. (2012). Emotional sounds influence vertical vection. Perception, 41(7), 875–877.
79
Seno et al., 20112011xxxup-down, lateral, front-backintensity, onset latency, duration
enhancement in some conditions
visuals + walking > visual-only* when visual depicts expanding optic flow (but not contracting, vertical, lateral)
Seno, T., Ito, H., & Sunaga, S. (2011). Inconsistent locomotion inhibits vection. Perception, 40(6), 747.
80
Seno et al., 20112011xtactile - windxfront-backintensity, duration, onset latency
enhancement in some conditions
visuals + wind > visual-only *when visual motion was expanding (not contracting)
Seno, T., Ogawa, M., Ito, H., & Sunaga, S. (2011). Consistent air flow to the face facilitates vection. Perception, 40(10), 1237–1240.
81
Seno et al., 20122012x
arthrokinetic - arm movements
xfront-backintensity, duration, onset latencyenhancementvisuals + breaststroke movements > visual-only
Seno, T., Funatsu, F., & Palmisano, S. (2012). Virtual Swimming—Breaststroke Body Movements Facilitate Vection. Multisensory Research, 1–9. https://doi.org/10.1163/22134808-00002402
82
Seno et al., 2012 exp22012xxxup-downintensity, duration
enhancement in some conditions
visual + auditory > visual-only *when sound was descending and visual motion was downward
Seno, T., Hasuo, E., Ito, H., & Nakajima, Y. (2012). Perceptually plausible sounds facilitate visually induced self-motion perception (vection). Perception, 41(5), 577–593. https://doi.org/10.1068/p7184
83
Seno et al., 20182018xhead movementsxfront-backintensityenhancementvisuals + head movements > visuals-only: did not include on graph
Seno, T., FUJII, Y., & YOSHINAGA, T. (2018). Active Control of the Direction of Self-Motion by Head Movements and Vection Strength—The Comparison between the Virtual Driver and Virtual Passenger—. The Vision Society of Japan. https://doi.org/10.24636/vision.30.2_65
84
Seno, 20132013xxxfront-backintensity
enhancement in some conditions
visual + music > visual-only *when music is fast
Seno, T. (2013). Music Modulates the Strength of Vection. Psychology, 04(07), 566–568. https://doi.org/10.4236/psych.2013.47081
85
Soave et al., 20202020xxxxfront-backintensityenhancementvisual-auditory-tactile > visual-only, visual-audio
Soave, F., Bryan-Kinns, N., & Farkhatdinov, I. (2020). A Preliminary Study on Full-Body Haptic Stimulation on Modulating Self-motion Perception in Virtual Reality (pp. 461–469). https://doi.org/10.1007/978-3-030-58465-8_34
86
Tamada et al., 2017 exp 12017xxxfront-backintensity, durationno effectvisuals = visuals + vibrations
Tamada, Y., Hara, K., Fujii, Y., Seno, T., & Sato, M. (2017). EFFECTS OF FOOT-STIMULATION (VIBRATIONS AND A WATER-FLOW) ON VECTION. Proceedings of Fechner Day, 33.
87
Tamada et al., 2017 exp 22017xtactile - water flow on feetxfront-backintensity, durationenhancementvisuals + foot water flow > visuals-only
Tamada, Y., Hara, K., Fujii, Y., Seno, T., & Sato, M. (2017). EFFECTS OF FOOT-STIMULATION (VIBRATIONS AND A WATER-FLOW) ON VECTION. Proceedings of Fechner Day, 33.
88
Tanahashi et al., 20152015xxxyawduration, intensity
enhancement in some conditions
visual + auditory > auditory-only * when auditory was hotizontal& visual motion was horizontal sheering pattern: not on graph
Tanahashi, S., Ashihara, K., & Ujike, H. (2015). Effects of auditory information on self-motion perception during simultaneous presentation of visual shearing motion. Frontiers in Psychology, 6, 749. https://doi.org/10.3389/fpsyg.2015.00749
89
Väljamäe et al., 20062006xxxfront-backintensity, convincingness
enhancement in some conditions
auditory + vibratactile > auditory-only * when vibrations were mechanical shakers
Väljamäe, A., Larsson, P., Västfjäll, D., & Kleiner, M. (2006). Vibrotactile enhancement of auditory induced self-motion and spatial presence. Journal of the Acoustic Engineering Society, 54(10), 954–963.
90
Väljamäe et al., 20092009xxxyawintensity, convincingnessno effectvibrotactile stimuluation did not enahnce auditorily-induced vection
Väljamäe, A., Alliprandini, P. M. Z., Alais, D., & Kleiner, M. (2009). Auditory Landmarks Enhance Circular Vection in Multimodal Virtual Reality. Journal of the Audio Engineering Society, 57(3), 111–120.
91
van Doorn et al., 20122012xtactile - sliding touchxup-down, front-back intensity, duration, onsetno effecttactile stimuli (e.g. , the tip of a rod moved up the body) had no influence on perceived vection.
Van Doorn, G. H. V., Seno, T., & Symmons, M. (2012). The Inability of Supraliminal Tactile Stimuli to Influence Illusory Self-Motion. The Seventh International Workshop on Haptic and Audio Interaction Design, Lund, Sweden.
92
Weech & Troje, 20172017xGVS, BCVxroll, pitch, yawonset latencyenhancementvisuals + GVS > visual-only, visuals + BCV > visual-only: did not include on graph
Weech, S., & Troje, N. F. (2017). Vection Latency Is Reduced by Bone-Conducted Vibration and Noisy Galvanic Vestibular Stimulation. Multisensory Research, 30(1), 65–90. https://doi.org/10.1163/22134808-00002545
93
Wong & Frost, 19811981xvestibular - chair rotationxyawonset latency
enhancement in some conditions
visuals + chair rotation > visuals-only*when visual and chair motion were moving in opposite directions
Wong, S. C. P., & Frost, B. J. (1981). The effect of visual-vestibular conflict on the latency of steady-state visually induced subjective rotation. Perception & Psychophysics, 30(3), 228–236. https://doi.org/10.3758/BF03214278
94
Wright et al., 20052005xxxup-down
compellingness and onset latency of perceived self-motion
enhancement
The pattern of results shows that increasing levels of stimulation for both visual and inertial inputs reduces latencies
Wright, W. G., DiZio, P., & Lackner, J. (2005). Vertical linear self-motion perception during visual andinertial motion: More than weighted summation of sensory inputs. Journal of Vestibular Research - Equilibrium & Orientation, 15(4), 185–195.
95
Wright, 2009 2009xxxup-down, lateralcompellingness of self-motion
enhancement in some conditions
visual + vestibular > visual-only*when intertial motion is discordant
Wright, W. G. (2009). Linear vection in virtual environments can be strengthened by discordant inertial input. Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, 1157–1160. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5333425
96
Yahata et al., 20212021xtactile- windxfront-backintensity, duration, onset
enhancement in some conditions
visuals + wind > visual- only * when hot temp wind matched firey corridor visual
Yahata, R., Takeya, W., Seno, T., & Tamada, Y. (2021). Hot Wind to the Body Can Facilitate Vection Only When Participants Walk Through a Fire Corridor Virtually. Perception, 50(2), 154–164. https://doi.org/10.1177/0301006620987087
97
98
99
100