A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | AA | AB | AC | AD | AE | AF | AG | AH | AI | AJ | AK | AL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Citation | year | Sensory modality: visual | auditory | Vibrotactile | Vestibular: motion platform | vestibular: leaning | other | Manipulated modality: visual | Manipulated modality: auditory | Manipulated: Vibrotactile | Manipulated: Vestibular: motion platform | Manipulated: vestibular: leaning | Manipulated: Biomechanical: walking | Manipulated modality: other | Vection direction: linear | Vection direction: circular | Vection direction: curvilinear | DOF | vection measure | Multisensory contribution to vection [from manipulated variable] | comments | full citation | |||||||||||||||
2 | Adhikari et al., 2021 | 2021 | x | x | x | x | forward, yaw, pitch | sensation of self-motion | enhancement | Headjoystick +visusls > gamepad + visuals in flying navigational search task | Adhikari, A., Hashemian, A. M., Nguyen-Vo, T., Kruijff, E., Heyde, M. von der, & Riecke, B. E. (2021). Lean to Fly: Leaning-Based Embodied Flying can Improve Performance and User Experience in 3D Navigation. Frontiers in Virtual Reality, 2, 1–22. doi:10.3389/frvir.2021.730334 | |||||||||||||||||||||||||||
3 | Amemiya et al. 2013 exp 1 | 2013 | x | x | x | front-back | percevied self-motion velocity | enhancement in some conditions | visual + vibrotactile > visual-only* when visual motion is fast | Amemiya, T., K. Hirota, and Y. Ikei. 2013. “Tactile Flow on Seat Pan Modulates Perceived Forward Velocity.” Pp. 71–77 in 2013 IEEE Symposium on 3D User Interfaces (3DUI). | ||||||||||||||||||||||||||||
4 | Amemiya et al. 2013 exp 2 | 2013 | x | x | x | front-back | percevied self-motion velocity | no effect | Tactile apparent motion on a seat pan did not facilitate the perceived forward velocity | Amemiya, T., K. Hirota, and Y. Ikei. 2013. “Tactile Flow on Seat Pan Modulates Perceived Forward Velocity.” Pp. 71–77 in 2013 IEEE Symposium on 3D User Interfaces (3DUI). | ||||||||||||||||||||||||||||
5 | Amemiya et al. 2016 | 2016 | x | x | x | front-back | percevied velocity | enhancement in some conditions | visuals + vibrations > visuals-only *when visual & vibrations are fast | Amemiya, T., Hirota, K., & Ikei, Y. (2016). Tactile Apparent Motion on the Torso Modulates Perceived Forward Self-Motion Velocity. IEEE Transactions on Haptics, 9(4), 474–482. https://doi.org/10.1109/TOH.2016.2598332 | ||||||||||||||||||||||||||||
6 | Aruga et al., 2019 | 2019 | x | x | olfactory | x | front-back | intensity | no effect | smell didn't infleunce vection :not on graph | Aruga, A., Bannai, Y., & Seno, T. (2019). Investigation of the Influence of Scent on Self-Motion Feeling by Vection. 9. | |||||||||||||||||||||||||||
7 | Ash et al. 2011 | 2011 | x | active head oscillations | x | front-back | intensity | enhancement in some conditions | visuals + head movements > visuals (head stationary) * when visual display oscillation is inphase with head movements | Ash, A., Palmisano, S., & Kim, J. (2011). Vection in depth during consistent and inconsistent multisensory stimulation. Perception, 40(2), 155–174. https://doi.org/10.1068/p6837 | ||||||||||||||||||||||||||||
8 | Ash et al. 2013 | 2013 | x | x | x | front-back | intensity | reduction | visual-only > visual + walking | Ash, A., Palmisano, S., Apthorp, D., & Allison, R. S. (2013). Vection in Depth during Treadmill Walking. Perception, 42(5), 562–576. https://doi.org/10.1068/p7449 | ||||||||||||||||||||||||||||
9 | Bles, 1981 | 1981 | x | x | x | x | yaw | magnitude estimates of CV | no effect | visual-only = visual + motion = visual + stepping = visual + motion + stepping | Bles, W. (1981). Stepping around: Circular vection and Coriolis effects. In J. Long & A. Baddeley (Eds.), Attention and performance IX (pp. 47–61). Erlbaum, Hillsdale, NJ. | |||||||||||||||||||||||||||
10 | Colley et al.,2021 | 2021 | x | tactile- forcefeedback | x | x | front-back, curves | vection strength | benefit | visual +force > visual-only | Colley, M., Jansen, P., Rukzio, E., & Gugenheimer, J. (2022). SwiVR-Car-Seat: Exploring Vehicle Motion Effects on Interaction Quality in Virtual Reality Automated Driving Using a Motorized Swivel Seat. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(4), 150:1-150:26. https://doi.org/10.1145/3494968 | |||||||||||||||||||||||||||
11 | Costes et al., 2022 | 2022 | x | tactile- forcefeedback | x | front-back | relative motion | benefit | visual +force > visual-only | Costes, A., & Lécuyer, A. (2022). The “Kinesthetic HMD”: Inducing Self-Motion Sensations in Immersive Virtual Reality With Head-Based Force Feedback. Frontiers in Virtual Reality, 3. https://www.frontiersin.org/articles/10.3389/frvir.2022.838720 | ||||||||||||||||||||||||||||
12 | Cress et al., 1997 | 1997 | x | electrical vestibular stimulation | x | roll | intensity | enhancement in some conditions | visuals + EVS > visuals-only*when visuals depict roll motion (not lateral) :did not include on graph | Cress, J. D., Hettinger, L. J., Cunningham, J. A., Riccio, G. E., Haas, M. W., & McMillan, G. R. (1997). Integrating vestibular displays for VE and airborne applications. IEEE Computer Graphics and Applications, 17(6), 46–52. https://doi.org/10.1109/38.626969 | ||||||||||||||||||||||||||||
13 | D'amour et al., 2017 | 2017 | x | x | tactile- wind | x | x | intensity, duration | disadvantage | visuals-only > visuals +wind, visual-only > visual+vibrations, Visual-only > wind+vibrations | D’Amour, S., Bos, J. E., & Keshavarz, B. (2017). The efficacy of airflow and seat vibration on reducing visually induced motion sickness. Experimental Brain Research, 235, 2811–2820. https://doi.org/10.1007/s00221-017-5009-1 | |||||||||||||||||||||||||||
14 | Danieau et al., 2012 | 2012 | x | x | tactile - forcefeedback | x | x | strength of self-motion | benefit | visual +auditory + force > visual + auditory | Danieau, F., Fleureau, J., Cabec, A., Kerbiriou, P., Guillotel, P., Mollet, N., Christie, M., & Lécuyer, A. (2012). Framework for enhancing video viewing experience with haptic effects of motion. 2012 IEEE Haptics Symposium (HAPTICS), 541–546. https://doi.org/10.1109/HAPTIC.2012.6183844 | |||||||||||||||||||||||||||
15 | Farkhatdinov et al., 2013 | 2013 | x | x | x | front-back | intensity, onset latency | enhancement in some conditions | visuals + vibrations > visuals -only * when vibrations are sinusodial pattern (not pink noise) | Farkhatdinov, I., Ouarti, N., & Hayward, V. (2013). Vibrotactile inputs to the feet can modulate vection. World Haptics Conference (WHC), 2013, 677–681. https://doi.org/10.1109/WHC.2013.6548490 | ||||||||||||||||||||||||||||
16 | Feng et al., 2016 | 2016 | x | x | x | tactile - wind | x | sesnsation of movement (1-6) | enhancement in some conditions | visuals + movement wind > visuals | Feng, M., Dey, A., & Lindeman, R. W. (2016). An initial exploration of a multi-sensory design space: Tactile support for walking in immersive virtual environments. 2016 IEEE Symposium on 3D User Interfaces (3DUI), 95–104. https://doi.org/10.1109/3DUI.2016.7460037 | |||||||||||||||||||||||||||
17 | Freiberg et al., 2013 | 2013 | x | x | x | yaw | intensity, convincingness | enhancement | visual + biomechanical > visual-only | Freiberg, J., Grechkin, T., & Riecke, B. E. (2013). Do walking motions enhance visually induced self-motion illusions in virtual reality? IEEE Virtual Reality. | ||||||||||||||||||||||||||||
18 | Harrison et al., 2010 | 2010 | x | x | x | yaw | perceveid self-motion | enhancement | visuals + auditory > auditory-only : not on graph | Harrison, W. J., Thompson, M. B., & Sanderson, P. M. (2010). Multisensory Integration With a Head-Mounted Display: Background Visual Motion and Sound Motion. Human Factors: The Journal of the Human Factors and Ergonomics Society, 52(1), 78–91. https://doi.org/10.1177/0018720810367790 | ||||||||||||||||||||||||||||
19 | Hashemian & Riecke, 2017 | 2017 | x | x | x | front-back, lateral | intensity | no effect | visuals + joystick = visuals + navichair, visuals + real motions, visuals + swivel chair | Hashemian, A. M., & Riecke, B. E. (2017). Leaning-Based 360° Interfaces: Investigating Virtual Reality Navigation Interfaces with Leaning-Based-Translation and Full-Rotation. In S. Lackey & J. Chen (Eds.), Virtual, Augmented and Mixed Reality (VAMR 2017) (Vol. 10280, pp. 15–32). Springer. https://doi.org/10.1007/978-3-319-57987-0_2 | ||||||||||||||||||||||||||||
20 | Hashemian et al., 2020 | 2020 | x | x | x | forward, yaw, pitch | intensity | enhancement | visuals + Headjoystick increased vection intensity compared to visuals + controller | Hashemian, A., Lotfaliei, M., Adhikari, A., Kruijff, E., & Riecke, B. E. (2020). HeadJoystick: Improving Flying in VR using a Novel Leaning-Based Interface. IEEE Transactions on Visualization and Computer Graphics, 1–18. https://doi.org/10.1109/TVCG.2020.3025084 | ||||||||||||||||||||||||||||
21 | Hashemian et al., 2021 exp 2 | 2021 | x | x | x | x | forward, yaw | intensity | enhancement | visuals + Headjoystick > hand-held controller + visuals | Hashemian, A. M., Adhikari, A., Kruijff, E., Heyde, M. von der, & Riecke, B. E. (2021). Leaning-based interfaces improve ground-based VR locomotion in reach-the-target, follow-the-path, and racing tasks. IEEE Transaction on visualization and computer graphics TVCG, 1–22. doi:10.1109/TVCG.2021.3131422 | |||||||||||||||||||||||||||
22 | Hashemian et al., 2021 exp 3 | 2021 | x | x | x | x | forward, yaw | intensity | no effect | visuals + Headjoystick = hand-held controller + visuals | Hashemian, A. M., Adhikari, A., Kruijff, E., Heyde, M. von der, & Riecke, B. E. (2021). Leaning-based interfaces improve ground-based VR locomotion in reach-the-target, follow-the-path, and racing tasks. IEEE Transaction on visualization and computer graphics TVCG, 1–22. doi:10.1109/TVCG.2021.3131422 | |||||||||||||||||||||||||||
23 | Hashemian et al., 2021 exp1 | 2021 | x | x | x | x | forward, yaw | intensity | enhancement | visuals + Headjoystick > hand-held controller + visuals | Hashemian, A. M., Adhikari, A., Kruijff, E., Heyde, M. von der, & Riecke, B. E. (2021). Leaning-based interfaces improve ground-based VR locomotion in reach-the-target, follow-the-path, and racing tasks. IEEE Transaction on visualization and computer graphics TVCG, 1–22. doi:10.1109/TVCG.2021.3131422 | |||||||||||||||||||||||||||
24 | Hashemian et al., 2023 | 2023 | x | x | x | x | forward, yaw | intensity | enhancement in some conditions | Standing leaning (NaviBoard) + visuals > gamepad + visuals, but headjoystick was not. | Hashemian, A. M., Adhikari, A., Aguilar, I. A., Kruijff, E., von der Heyde, M., & Riecke, B. E. (2023). Leaning-Based Interfaces Improve Simultaneous Locomotion and Object Interaction in VR Compared to the Handheld Controller. IEEE Transactions on Visualization and Computer Graphics (accepted), 1-17. | |||||||||||||||||||||||||||
25 | Hayashizaki et al., 2015 | 2015 | x | x | x | front-back | intensity | enhancement | visuals + vibrations > visual-only | Hayashizaki, T., Fujita, A., Nozawa, J., Ueda, S., Hirota, K., Ikei, Y., & Kitazaki, M. (2015). Walking Experience by Real-scene Optic Flow with Synchronized Vibrations on Feet. Proceedings of the 6th Augmented Human International Conference, 183–184. https://doi.org/10.1145/2735711.2735803 | ||||||||||||||||||||||||||||
26 | Horie et al., 2018 | 2018 | x | tactile - skin stretch | percevied acceleration | enhancement in some conditions | skin stretch +visuals > visuals*to a certain degree | Horie, Arata, Hikaru Nagano, Masashi Konyo, and Satoshi Tadokoro. 2018. “Buttock Skin Stretch: Inducing Shear Force Perception and Acceleration Illusion on Self-Motion Perception.” Pp. 135–47 in Haptics: Science, Technology, and Applications, Lecture Notes in Computer Science, edited by D. Prattichizzo, H. Shinoda, H. Z. Tan, E. Ruffaldi, and A. Frisoli. Cham: Springer International Publishing. | ||||||||||||||||||||||||||||||
27 | Keshavarz & Hecht, 2012 | 2012 | x | x | x | x | x | up-down, left-right | frequency of vection | no effect | visuals +auditory = visuals-only | Keshavarz, Behrang, and Heiko Hecht. 2012. “Stereoscopic Viewing Enhances Visually Induced Motion Sickness but Sound Does Not.” Presence 21(2):213–28. | ||||||||||||||||||||||||||
28 | Keshavarz & Hecht, 2012 | 2012 | x | x | x | x | x | front-back, lateral | frequency | no effect | visuals + auditory= visual-only | Keshavarz, B., & Hecht, H. (2012). Visually induced motion sickness and presence in videogames: The role of sound. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 56(1), 1763–1767. https://doi.org/10.1177/1071181312561354 | ||||||||||||||||||||||||||
29 | Keshavarz et al., 2014 | 2014 | x | x | x | yaw | onset latency, intensity | enhancement | visual + auditory > visual -only, auditory-only | Keshavarz, B., Hettinger, L. J., Kennedy, R. S., & Campos, J. L. (2014). Demonstrating the Potential for Dynamic Auditory Stimulation to Contribute to Motion Sickness. PLoS ONE, 9(7), e101016. https://doi.org/10.1371/journal.pone.0101016 | ||||||||||||||||||||||||||||
30 | Keshavarz et al., 2014 | 2014 | x | x | x | yaw | onset latency, intensity | enhancement | visual + auditory > visual -only, auditory-only | Keshavarz, B., Hettinger, L. J., Vena, D., & Campos, J. L. (2014). Combined effects of auditory and visual cues on the perception of vection. Experimental Brain Research, 232(3), 827–836. https://doi.org/10.1007/s00221-013-3793-9 | ||||||||||||||||||||||||||||
31 | Keshavarz et al., 2018 | 2018 | x | x | x | x | x | x | front-back, lateral, yaw | intensity, duration | no effect/reduction | vection duration was shortest in the trimodal condition, vection intenstiy did not change across sensory conditions | Keshavarz, B., Ramkhalawansingh, R., Haycock, B., Shahab, S., & Campos, J. L. (2018). Comparing simulator sickness in younger and older adults during simulated driving under different multisensory conditions. Transportation Research Part F: Traffic Psychology and Behaviour, 54, 47–62. https://doi.org/10.1016/j.trf.2018.01.007 | |||||||||||||||||||||||||
32 | Kim & Palmisano, 2008 | 2008 | x | active head oscillations | x | front-back | intensity, perceived speed | no effect | visuals +head movements = visuals | Kim, J., & Palmisano, S. (2008). Effects of active and passive viewpoint jitter on vection in depth. Brain Research Bulletin, 77(6), 335–342. https://doi.org/10.1016/j.brainresbull.2008.09.011 | ||||||||||||||||||||||||||||
33 | Kim et al.,2015 | 2015 | x | active head oscillations | x | front-back | intensity | reduction | visuals > visuals + head movements | Kim, J., Chung, C. Y. L., Nakamura, S., Palmisano, S., & Khuu, S. K. (2015). The Oculus Rift: A cost-effective tool for studying visual-vestibular interactions in self-motion perception. Perception Science, 6, 248. https://doi.org/10.3389/fpsyg.2015.00248 | ||||||||||||||||||||||||||||
34 | Kitazaki et al., 2010 | 2010 | x | x | x | front-back | onset latency | enhancement in some conditions | visual + biomechanical > visual-only*when direction of radial flow was opposite (backward) to direction of walking (forward) | Kitazaki, M., Onimaru, S., & Sato, T. (2010). Vection and Action are Incompatible. 22–23. | ||||||||||||||||||||||||||||
35 | Kitazaki et al., 2016 | 2016 | x | x | x | front-back | intensity | enhancement | viaual + vibrations > visual-only | Kitazaki, M., Hirota, K., & Ikei, Y. (2016). Minimal Virtual Reality System for Virtual Walking in a Real Scene. In S. Yamamoto (Ed.), Human Interface and the Management of Information: Information, Design and Interaction (pp. 501–510). Springer International Publishing. https://doi.org/10.1007/978-3-319-40349-6_48 | ||||||||||||||||||||||||||||
36 | Kitazaki et al., 2019 | 2019 | x | x | x | front-back | intensity | enhancement in some conditions | visual + vibrations > visual-only *when vibrations were sync with visual | Kitazaki, M., Hamada, T., Yoshiho, K., Kondo, R., Amemiya, T., Hirota, K., & Ikei, Y. (2019). Virtual Walking Sensation by Prerecorded Oscillating Optic Flow and Synchronous Foot Vibration. I-Perception, 10(5), 2041669519882448. https://doi.org/10.1177/2041669519882448 | ||||||||||||||||||||||||||||
37 | Kitson et al., 2017 | 2017 | x | x | x | x | x | yaw, front-back | sensation of self-motion | no effect | visuals + joystick = visuals + navichair, visuals + Muvman, visuals + head-directed, visuals + swivel chair | Kitson, A., Hashemian, A. M., Stepanova, E. R., Kruijff, E., & Riecke, B. E. (2017). Comparing Leaning-Based Motion Cueing Interfaces for Virtual Reality Locomotion. Proceedings of IEEE Symposium on 3D User Interfaces 3DUI, 73–82. https://doi.org/10.1109/3DUI.2017.7893320 | ||||||||||||||||||||||||||
38 | Koge et al., 2015 | 2015 | x | x | x | up-down | intensity | enhancement | visual + motion > visual-only | Koge, M., Hachisu, T., & Kajimoto, H. (2015). VisuaLift Studio: Study on motion platform using elevator. 2015 IEEE Symposium on 3D User Interfaces (3DUI), 167–168. https://doi.org/10.1109/3DUI.2015.7131753 | ||||||||||||||||||||||||||||
39 | Kooijman et al., 2023 | 2023 | x | x | x | x | x | roll | intensity, convincingness | disadvantage | visual+audio > visual+audio+vibrations | Kooijman, L., Asadi, H., Arango, C. G., Mohamed, S., & Nahavandi, S. (2023). Investigating the influence of neck muscle vibration on illusory self-motion in virtual reality. PsyArXiv. https://doi.org/10.31234/osf.io/853ch | ||||||||||||||||||||||||||
40 | Kruijff et al., 2015 exp1 | 2015 | x | x | x | front-back | intensity | no effect | visuals + sitting upright = visuals + static leaning on angle | Kruijff, Ernst, Bernhard E. Riecke, Christina Trepkowski, and A. Kitson. 2015. “Upper Body Leaning Can Affect Forward Self-Motion Perception in Virtual Environments.” Pp. 103–12 in. Los Angeles, CA, USA: ACM. | ||||||||||||||||||||||||||||
41 | Kruijff et al., 2015 exp3 | 2015 | x | x | x | front-back | vection realism | enhancement in some conditions | visuals + static leaning on angle > visuals + upright *at faster velocities | Kruijff, Ernst, Bernhard E. Riecke, Christina Trepkowski, and A. Kitson. 2015. “Upper Body Leaning Can Affect Forward Self-Motion Perception in Virtual Environments.” Pp. 103–12 in. Los Angeles, CA, USA: ACM. | ||||||||||||||||||||||||||||
42 | Kruijff et al., 2015 exp4 | 2015 | x | x | x | front-back | vection realism, intensity | no effect | visuals + dynamic leaning on angles = visuals | Kruijff, Ernst, Bernhard E. Riecke, Christina Trepkowski, and A. Kitson. 2015. “Upper Body Leaning Can Affect Forward Self-Motion Perception in Virtual Environments.” Pp. 103–12 in. Los Angeles, CA, USA: ACM. | ||||||||||||||||||||||||||||
43 | Kruijff et al., 2016 session 2 | 2016 | x | x | x | x | x | yaw | intensity | enhancement | visuals + leaning + audio + vibrations > visuals + leaning | Kruijff, Ernst, Alexander Marquardt, Christina Trepkowski, Robert W. Lindeman, Andre Hinkenjann, Jens Maiero, and Bernhard E. Riecke. 2016. “On Your Feet!: Enhancing Vection in Leaning-Based Interfaces through Multisensory Stimuli.” Pp. 149–58 in Proceedings of the 2016 Symposium on Spatial User Interaction. Tokyo Japan: ACM. | ||||||||||||||||||||||||||
44 | Kruijff et al., 2016 session 3 | 2016 | x | x | x | x | x | yaw | intensity | enhancement | visuals + leaning + audio + vibrations > visuals + joystick | Kruijff, Ernst, Alexander Marquardt, Christina Trepkowski, Robert W. Lindeman, Andre Hinkenjann, Jens Maiero, and Bernhard E. Riecke. 2016. “On Your Feet!: Enhancing Vection in Leaning-Based Interfaces through Multisensory Stimuli.” Pp. 149–58 in Proceedings of the 2016 Symposium on Spatial User Interaction. Tokyo Japan: ACM. | ||||||||||||||||||||||||||
45 | Kruijff et al., 2016 session 5 | 2016 | x | x | x | intensity | enhancement | visuals + audio + vibrations > visuals | Kruijff, Ernst, Alexander Marquardt, Christina Trepkowski, Robert W. Lindeman, Andre Hinkenjann, Jens Maiero, and Bernhard E. Riecke. 2016. “On Your Feet!: Enhancing Vection in Leaning-Based Interfaces through Multisensory Stimuli.” Pp. 149–58 in Proceedings of the 2016 Symposium on Spatial User Interaction. Tokyo Japan: ACM. | |||||||||||||||||||||||||||||
46 | Lackner & DiZio, 1983 | 1983 | biomechanical -stepping | sliding touch | x | yaw | compellingness | enhancement | stepping + sliding touch > stepping-only | Lackner, James, and P. Dizio. 1983. “Some Efferent and Somatosensory Influences on Body Orientation and Oculomotor Control.” Pp. 281–301 in Sensory Experience, Adaptation and Perception. Psychology Press. | ||||||||||||||||||||||||||||
47 | Lind et al., 2016 | 2016 | x | x | x | x | x | x | front-back, lateral | compellingness | enhancement in some conditions | visual + auditory +lean + vibrations > visual-auditory-lean * when vibrations were static | Lind, Stine, Lui Thomsen, Mie Egeberg, Niels Nilsson, Rolf Nordahl, and Stefania Serafin. 2016. “Effects of Vibrotactile Stimulation During Virtual Sandboarding.” IEEE Virtual Real. 219–20. doi: during virtual sandboarding. 2016 IEEE Virtual Reality (VR), 219–220. https://doi.org/10.1109/VR.2016.7504732. | |||||||||||||||||||||||||
48 | Liu et al., 2022 | 2022 | x | x | x | x | forward, yaw, pitch | sensation of self-motion | no effect | visuals + Headjoystick = visuals + hand controller | Liu, P., Stepanova, E. R., Kitson, A. J., Schiphorst, T., & Riecke, B. E. (2022). Virtual Transcendent Dream: Empowering People through Embodied Flying in Virtual Reality. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1–18). Presented at the CHI Conference on Human Factors in Computing Systems, New Orleans: ACM. doi:10.1145/3491102.3517677 | |||||||||||||||||||||||||||
49 | Luu et al., 2021 | 2021 | x | head movements | x | front-back | intensity | no effect | visuals-only = visuals + head oscillations | Luu, W., Zangerl, B., Kalloniatis, M., Palmisano, S., & Kim, J. (2021). Vision Impairment Provides New Insight Into Self-Motion Perception. Investigative Ophthalmology & Visual Science, 62(2), 4. https://doi.org/10.1167/iovs.62.2.4 | ||||||||||||||||||||||||||||
50 | Maeda et al., 2005 | 2005 | x | GVS | x | up-down, lateral | intensity | enhancement in some conditions | visuals + GVS > visual-only *when GVS was anti-phase: did not include on graph | Maeda, T., H. Ando, and M. Sugimoto. 2005. “Virtual Acceleration with Galvanic Vestibular Stimulation in a Virtual Reality Environment.” Pp. 289–90 in IEEE Proceedings. VR 2005. Virtual Reality, 2005. | ||||||||||||||||||||||||||||
51 | Melcher & Henn, 1981 | 1981 | x | x | x | yaw | onset latency | enhancement | visual + turtable motion > visual-only, turntable-only | Melcher, G. A., and V. Henn. 1981. “The Latency of Circular Vection during Different Accelerations of the Optokinetic Stimulus.” Perception & Psychophysics 30(6):552–56. doi: 10.3758/BF03202009. | ||||||||||||||||||||||||||||
52 | Mori & Seno, 2018 | 2018 | x | tactile - grasping | x | front-back | intensity | reduction | visual -only > visual+ grasping | Mori, Masaki, and Takeharu Seno. 2018. “Inhibition of Vection by Grasping an Object.” Experimental Brain Research 236(12):3215–21. doi: 10.1007/s00221-018-5375-3. | ||||||||||||||||||||||||||||
53 | Murata et al., 2014 | 2014 | x | tactile - wind | x | front-back, lateral | intensity | enhancement in some conditions | body sway + wind > sway-only * more pronounced for certain directions of wind | Murata, Kayoko, Takeharu Seno, Yoko Ozawa, and Shigeru Ichihara. 2014. “Self-Motion Perception Induced by Cutaneous Sensation Caused by Constant Wind.” Psychology 05(15):1777–82. doi: 10.4236/psych.2014.515184. | ||||||||||||||||||||||||||||
54 | Murovec et al., 2021 | 2021 | x | x | tactile - sliding touch | x | yaw | intensity, duration | enhancement | adding auditory and tactile increased vection | Murovec, Brandy, Julia Spaniol, Jennifer Campos, and Behrang Keshavarz. 2021. “Multisensory Effects on Illusory Self-Motion (Vection): The Role of Visual, Auditory, and Tactile Cues.” Multisensory Research 1(aop):1–22. doi: 10.1163/22134808-bja10058. | |||||||||||||||||||||||||||
55 | Murovec et al., 2022 | 2022 | x | x | tactile - sliding touch | x | yaw | intensity, duration | enhancement | adding auditory and tactile increased vection | Murovec, B., Spaniol, J., Campos, J. L., & Keshavarz, B. (2022). Enhanced vection in older adults: Evidence for age-related effects in multisensory vection experiences. Perception, 1–17. https://doi.org/10.1177/03010066221113770 | |||||||||||||||||||||||||||
56 | Nilsson et al., 2012 | 2012 | x | x | x | x | lateral | intensity | enhancement in some conditions | visual + audiohaptic > audiohaptic * when visual was a train: not on graph | Nilsson, Niels C., Rolf Nordahl, Erik Sikström, Luca Turchet, and Stefania Serafin. 2012. “Haptically Induced Illusory Self-Motion and the Influence of Context of Motion.” Pp. 349–60 in Haptics: Perception, Devices, Mobility, and Communication, Lecture Notes in Computer Science, edited by P. Isokoski and J. Springare. Berlin, Heidelberg: Springer. | |||||||||||||||||||||||||||
57 | Nishimura et al., 2014 | 2014 | x | hypobaric hypoxia | x | front-back | intensity, duration, onset latency | reduction | visuals-only > visuals + hypobaric hypoxia: did not include on graph | Nishimura, Takayuki, Takeharu Seno, Midori Motoi, and Shigeki Watanuki. 2014. “Illusory Self-Motion (Vection) May Be Inhibited by Hypobaric Hypoxia.” Aviation, Space, and Environmental Medicine 85(5):504–8. doi: 10.3357/ASEM.3812.2014. | ||||||||||||||||||||||||||||
58 | Nordahl et al., 2012 | 2012 | x | x | x | x | up-down | intensity, compellingness | enhancement in some conditions | visual + vibrations > visual-only *when vibrations are sawtooth pattern | Nordahl, Rolf, Niels C. Nilsson, Luca Turchet, and Stefania Serafin. 2012. “Vertical Illusory Self-Motion through Haptic Stimulation of the Feet.” Pp. 21–26 in 2012 IEEE VR Workshop on Perceptual Illusions in Virtual Environments. Costa Mesa, CA, USA: IEEE. | |||||||||||||||||||||||||||
59 | Ogawa et al., 2011 | 2011 | x | tactile - wind | x | front-back | intensity, duration, onset latency | enhancement in some conditions | visual +wind >visual-only * when visual motion was expansion | Ogawa, Masaki, Takeharu Seno, Hiroyuki Ito, and Shoji Sunaga. 2011. “Consistent Wind Facilitates Vection.” I-Perception 2(8):868–868. doi: 10.1068/ic868. | ||||||||||||||||||||||||||||
60 | Oishi et al., 2016 | 2016 | x | tactile - pulling clothes | x | front-back | sense of movement | no effect | visual = visual + tactile | Oishi, Erika, Masahiro Koge, Sugarragchaa Khurelbaatar, and Hiroyuki Kajimoto. 2016. “Enhancement of Motion Sensation by Pulling Clothes.” Pp. 47–50 in Proceedings of the 2016 Symposium on Spatial User Interaction, SUI ’16. New York, NY, USA: Association for Computing Machinery. | ||||||||||||||||||||||||||||
61 | Ouarti et al., 2014 | 2014 | x | tactile - forcefeedback | x | up-down | frequency, duration | enhancement | visual + haptic > visual-only | Ouarti, Nizar, Anatole Lecuyer, and Alain Berthoz. 2014. “Haptic Motion: Improving Sensation of Self-Motion in Virtual Worlds with Force Feedback.” Pp. 167–74 in. Houston, TX, USA: IEEE. | ||||||||||||||||||||||||||||
62 | Ramkhalawansingh et al., 2016 | 2016 | x | x | x | x | x | front-back, lateral | intensity | no effect | visual + auditory = visual-only | Ramkhalawansingh, Robert, Behrang Keshavarz, Bruce Haycock, Saba Shahab, and Jennifer Campos. 2016. “Age Differences in Visual-Auditory Self-Motion Perception during a Simulated Driving Task.” Frontiers in Psychology 7. doi: 10.3389/fpsyg.2016.00595. | ||||||||||||||||||||||||||
63 | Rampendahl et al., 2019 | 2019 | x | x | x | front-back | perceived self-motion | enhancement in some conditions | visual + auditory > visual-only * when sound was mono (not stereo or spatial) | Rampendahl, Henrik, Stefan M. Grünvogel, and Arnulph Fuhrmann. 2019. “The Influence of Different Audio Representations on Linear Visually Induced Self-Motion.” Pp. 1–12 in Virtuelle und Erweiterte Realität - 16. Workshop der GI-Fachgruppe VR/AR. Fulda, Germany. | ||||||||||||||||||||||||||||
64 | Riecke & Feuereissen, 2012 | 2012 | x | x | x | x | x | front-back, lateral, yaw | intensity | enhancement in some conditions | visuals+ audio + chair motion (leaning and passive movement) > visual + audio*at lower velocties | Riecke, B. E., & Feuereissen, D. (2012). To move or not to move: Can active control and user-driven motion cueing enhance self-motion perception (“vection”) in virtual reality? Proceedings of the ACM Symposium on Applied Perception, 17–24. https://doi.org/10.1145/2338676.2338680 | ||||||||||||||||||||||||||
65 | Riecke et al., 2005 | 2005 | x | x | x | yaw | intensity | enhancement | auditory + vibration > auditory-only | Riecke, B. E., Västfjäll, D., & Schulte-pelkum, J. (2005, January 1). Top-Down and Multi-Modal Influences on Self-Motion Perception in Virtual Reality. Proceedings of HCI International. | ||||||||||||||||||||||||||||
66 | Riecke et al., 2005 | 2005 | x | x | x | yaw | convincingness, onset latency | enhancement in some conditions | visual +auditory > visual-only * when sound is spatialized (not mono) | Riecke, B. E., Schulte-Pelkum, J., Caniard, F., & Bülthoff, H. H. (2005). Influence of Auditory Cues on the visually-induced Self-Motion Illusion (Circular Vection) in Virtual Reality. 49–57. http://www0.cs.ucl.ac.uk/research/vr/Projects/Presencia/Presence2005/presence2005.pdf | ||||||||||||||||||||||||||||
67 | Riecke et al., 2005 exp 3 | 2005 | x | x | x | yaw | onset latency, convincingness | enhancement | visuals + vibrations > visual-only | Riecke, B. E., Schulte-Pelkum, J., Caniard, F., & Bulthoff, H. H. (2005). Towards lean and elegant self-motion simulation in virtual reality. Virtual Reality, 2005. Proceedings. VR 2005. IEEE, 131–138. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1492765 | ||||||||||||||||||||||||||||
68 | Riecke et al., 2005 exp 4 | 2005 | x | x | x | yaw | build-up time, convincingness | enhancement | visuals + auditory > visual-only | Riecke, B. E., Schulte-Pelkum, J., Caniard, F., & Bulthoff, H. H. (2005). Towards lean and elegant self-motion simulation in virtual reality. Virtual Reality, 2005. Proceedings. VR 2005. IEEE, 131–138. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1492765 | ||||||||||||||||||||||||||||
69 | Riecke et al., 2009 | 2009 | x | x | x | yaw | onset latency, intensity | enhancement | auditory + vibration > auditory-only | Riecke, B. E., Feuereissen, D., & Rieser, J. J. (2009). Auditory self-motion simulation is facilitated by haptic and vibrational cues suggesting the possibility of actual motion. ACM Transactions on Applied Perception, 6(3), 20:1-20:22. https://doi.org/10.1145/1577755.1577763 | ||||||||||||||||||||||||||||
70 | Riecke et al., 2009 | 2009 | x | x | x | yaw | build-up time, convincingness | enhancement in some conditions | visual + auditory > visual-only* when sound is spatialized | Riecke, B. E., Väljamäe, A., & Schulte-Pelkum, J. (2009). Moving sounds enhance the visually-induced self-motion illusion (circular vection) in virtual reality. ACM Transactions on Applied Perception, 6(2), 1–27. https://doi.org/10.1145/1498700.1498701 | ||||||||||||||||||||||||||||
71 | Riecke et al., 2010 | 2010 | biomechanical | x | x | yaw | intensity | enhancement in some conditions | stepping + spatialized sound > stepping + masked auditory | Riecke, B. E., Feuereissen, D., & Rieser, J. J. (2010). Spatialized sound influences biomechanical self-motion illusion (“vection”). Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization - APGV ’10, 158. https://doi.org/10.1145/1836248.1836280 | ||||||||||||||||||||||||||||
72 | Riecke et al., 2011 | 2011 | x | x | x | yaw | intenisty, realism | enhancement | auditory + biomechanical > biomechanical-only | Riecke, B. E., Feuereissen, D., Rieser, J., & McNamara, T. (2011). Spatialized sound enhances biomechanically-induced self-motion illusion (vection). In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (p. 2802). https://doi.org/10.1145/1978942.1979356 | ||||||||||||||||||||||||||||
73 | Riecke et al., 2015 | 2015 | x | x | x | yaw | intensity | enhancement | visual + biomechanical > visual-only | Riecke, B. E., Freiberg, J., & Grechkin, T. Y. (2015). Can Walking Motions Improve Visually Induced Rotational Self-Motion Illusions in Virtual Reality? Journal of Vision, 15(2), 1–15. https://doi.org/10.1167/15.2.3 | ||||||||||||||||||||||||||||
74 | Riecke et al., 2016 | 2016 | x | x | x | front-back | intensity | enhancement | visuals + seated leaning > visuals + joystick | Riecke, B. E., Trepkowski, C., & Kruijff, E. (2016). “Human Joystick”: Enhancing Self-Motion Perception (Linear Vection) by using Upper Body Leaning for Gaming and Virtual Reality. ISpaceLab Technical Report, 2016(1), 1–12. | ||||||||||||||||||||||||||||
75 | Riecke, 2006 | 2006 | x | vestibular (motion cueing) | x | x | front-back, lateral, yaw | intensity, duration, onset latency | enhancement | visuals + modified wheelchair > visuals + mouse, visuals + joystick | Riecke, Bernhard E. 2006. “Simple User-Generated Motion Cueing Can Enhance Self-Motion Perception (Vection) in Virtual Reality.” P. 104 in Proceedings of the ACM symposium on Virtual reality software and technology - VRST ’06. Limassol, Cyprus: ACM Press. | |||||||||||||||||||||||||||
76 | Rietzler et al., 2018 | 2018 | x | tactile - forcefeedback | x | front-back | vection strength | benefit | visual + force > visual-only | Rietzler, M., Hirzle, T., Gugenheimer, J., Frommel, J., Dreja, T., & Rukzio, E. (2018). VRSpinning: Exploring the Design Space of a 1D Rotation Platform to Increase the Perception of Self-Motion in VR. Proceedings of the 2018 Designing Interactive Systems Conference, 99–108. https://doi.org/10.1145/3196709.3196755 | ||||||||||||||||||||||||||||
77 | Rupert & Kolev, 2008 | 2008 | x | x | x | yaw | perceived velocity | reduction | Participants noted a decease in percevied velocity when tactile stimulus was applied | Rupert, A., & Kolev, O. (2008). The Use of Tactile Cues to Modify the Perception of Self-Motion. Technical Report ADA505849. | ||||||||||||||||||||||||||||
78 | Sasaki et al., 2012 | 2012 | x | x | x | up-down | onset latency, duration, intensity | enhancement in some conditions | visuals + auditory > visual-only * when visual motion was upward and sounds were postitive | Sasaki, K., Seno, T., Yamada, Y., & Miura, K. (2012). Emotional sounds influence vertical vection. Perception, 41(7), 875–877. | ||||||||||||||||||||||||||||
79 | Seno et al., 2011 | 2011 | x | x | x | up-down, lateral, front-back | intensity, onset latency, duration | enhancement in some conditions | visuals + walking > visual-only* when visual depicts expanding optic flow (but not contracting, vertical, lateral) | Seno, T., Ito, H., & Sunaga, S. (2011). Inconsistent locomotion inhibits vection. Perception, 40(6), 747. | ||||||||||||||||||||||||||||
80 | Seno et al., 2011 | 2011 | x | tactile - wind | x | front-back | intensity, duration, onset latency | enhancement in some conditions | visuals + wind > visual-only *when visual motion was expanding (not contracting) | Seno, T., Ogawa, M., Ito, H., & Sunaga, S. (2011). Consistent air flow to the face facilitates vection. Perception, 40(10), 1237–1240. | ||||||||||||||||||||||||||||
81 | Seno et al., 2012 | 2012 | x | arthrokinetic - arm movements | x | front-back | intensity, duration, onset latency | enhancement | visuals + breaststroke movements > visual-only | Seno, T., Funatsu, F., & Palmisano, S. (2012). Virtual Swimming—Breaststroke Body Movements Facilitate Vection. Multisensory Research, 1–9. https://doi.org/10.1163/22134808-00002402 | ||||||||||||||||||||||||||||
82 | Seno et al., 2012 exp2 | 2012 | x | x | x | up-down | intensity, duration | enhancement in some conditions | visual + auditory > visual-only *when sound was descending and visual motion was downward | Seno, T., Hasuo, E., Ito, H., & Nakajima, Y. (2012). Perceptually plausible sounds facilitate visually induced self-motion perception (vection). Perception, 41(5), 577–593. https://doi.org/10.1068/p7184 | ||||||||||||||||||||||||||||
83 | Seno et al., 2018 | 2018 | x | head movements | x | front-back | intensity | enhancement | visuals + head movements > visuals-only: did not include on graph | Seno, T., FUJII, Y., & YOSHINAGA, T. (2018). Active Control of the Direction of Self-Motion by Head Movements and Vection Strength—The Comparison between the Virtual Driver and Virtual Passenger—. The Vision Society of Japan. https://doi.org/10.24636/vision.30.2_65 | ||||||||||||||||||||||||||||
84 | Seno, 2013 | 2013 | x | x | x | front-back | intensity | enhancement in some conditions | visual + music > visual-only *when music is fast | Seno, T. (2013). Music Modulates the Strength of Vection. Psychology, 04(07), 566–568. https://doi.org/10.4236/psych.2013.47081 | ||||||||||||||||||||||||||||
85 | Soave et al., 2020 | 2020 | x | x | x | x | front-back | intensity | enhancement | visual-auditory-tactile > visual-only, visual-audio | Soave, F., Bryan-Kinns, N., & Farkhatdinov, I. (2020). A Preliminary Study on Full-Body Haptic Stimulation on Modulating Self-motion Perception in Virtual Reality (pp. 461–469). https://doi.org/10.1007/978-3-030-58465-8_34 | |||||||||||||||||||||||||||
86 | Tamada et al., 2017 exp 1 | 2017 | x | x | x | front-back | intensity, duration | no effect | visuals = visuals + vibrations | Tamada, Y., Hara, K., Fujii, Y., Seno, T., & Sato, M. (2017). EFFECTS OF FOOT-STIMULATION (VIBRATIONS AND A WATER-FLOW) ON VECTION. Proceedings of Fechner Day, 33. | ||||||||||||||||||||||||||||
87 | Tamada et al., 2017 exp 2 | 2017 | x | tactile - water flow on feet | x | front-back | intensity, duration | enhancement | visuals + foot water flow > visuals-only | Tamada, Y., Hara, K., Fujii, Y., Seno, T., & Sato, M. (2017). EFFECTS OF FOOT-STIMULATION (VIBRATIONS AND A WATER-FLOW) ON VECTION. Proceedings of Fechner Day, 33. | ||||||||||||||||||||||||||||
88 | Tanahashi et al., 2015 | 2015 | x | x | x | yaw | duration, intensity | enhancement in some conditions | visual + auditory > auditory-only * when auditory was hotizontal& visual motion was horizontal sheering pattern: not on graph | Tanahashi, S., Ashihara, K., & Ujike, H. (2015). Effects of auditory information on self-motion perception during simultaneous presentation of visual shearing motion. Frontiers in Psychology, 6, 749. https://doi.org/10.3389/fpsyg.2015.00749 | ||||||||||||||||||||||||||||
89 | Väljamäe et al., 2006 | 2006 | x | x | x | front-back | intensity, convincingness | enhancement in some conditions | auditory + vibratactile > auditory-only * when vibrations were mechanical shakers | Väljamäe, A., Larsson, P., Västfjäll, D., & Kleiner, M. (2006). Vibrotactile enhancement of auditory induced self-motion and spatial presence. Journal of the Acoustic Engineering Society, 54(10), 954–963. | ||||||||||||||||||||||||||||
90 | Väljamäe et al., 2009 | 2009 | x | x | x | yaw | intensity, convincingness | no effect | vibrotactile stimuluation did not enahnce auditorily-induced vection | Väljamäe, A., Alliprandini, P. M. Z., Alais, D., & Kleiner, M. (2009). Auditory Landmarks Enhance Circular Vection in Multimodal Virtual Reality. Journal of the Audio Engineering Society, 57(3), 111–120. | ||||||||||||||||||||||||||||
91 | van Doorn et al., 2012 | 2012 | x | tactile - sliding touch | x | up-down, front-back | intensity, duration, onset | no effect | tactile stimuli (e.g. , the tip of a rod moved up the body) had no influence on perceived vection. | Van Doorn, G. H. V., Seno, T., & Symmons, M. (2012). The Inability of Supraliminal Tactile Stimuli to Influence Illusory Self-Motion. The Seventh International Workshop on Haptic and Audio Interaction Design, Lund, Sweden. | ||||||||||||||||||||||||||||
92 | Weech & Troje, 2017 | 2017 | x | GVS, BCV | x | roll, pitch, yaw | onset latency | enhancement | visuals + GVS > visual-only, visuals + BCV > visual-only: did not include on graph | Weech, S., & Troje, N. F. (2017). Vection Latency Is Reduced by Bone-Conducted Vibration and Noisy Galvanic Vestibular Stimulation. Multisensory Research, 30(1), 65–90. https://doi.org/10.1163/22134808-00002545 | ||||||||||||||||||||||||||||
93 | Wong & Frost, 1981 | 1981 | x | vestibular - chair rotation | x | yaw | onset latency | enhancement in some conditions | visuals + chair rotation > visuals-only*when visual and chair motion were moving in opposite directions | Wong, S. C. P., & Frost, B. J. (1981). The effect of visual-vestibular conflict on the latency of steady-state visually induced subjective rotation. Perception & Psychophysics, 30(3), 228–236. https://doi.org/10.3758/BF03214278 | ||||||||||||||||||||||||||||
94 | Wright et al., 2005 | 2005 | x | x | x | up-down | compellingness and onset latency of perceived self-motion | enhancement | The pattern of results shows that increasing levels of stimulation for both visual and inertial inputs reduces latencies | Wright, W. G., DiZio, P., & Lackner, J. (2005). Vertical linear self-motion perception during visual andinertial motion: More than weighted summation of sensory inputs. Journal of Vestibular Research - Equilibrium & Orientation, 15(4), 185–195. | ||||||||||||||||||||||||||||
95 | Wright, 2009 | 2009 | x | x | x | up-down, lateral | compellingness of self-motion | enhancement in some conditions | visual + vestibular > visual-only*when intertial motion is discordant | Wright, W. G. (2009). Linear vection in virtual environments can be strengthened by discordant inertial input. Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, 1157–1160. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5333425 | ||||||||||||||||||||||||||||
96 | Yahata et al., 2021 | 2021 | x | tactile- wind | x | front-back | intensity, duration, onset | enhancement in some conditions | visuals + wind > visual- only * when hot temp wind matched firey corridor visual | Yahata, R., Takeya, W., Seno, T., & Tamada, Y. (2021). Hot Wind to the Body Can Facilitate Vection Only When Participants Walk Through a Fire Corridor Virtually. Perception, 50(2), 154–164. https://doi.org/10.1177/0301006620987087 | ||||||||||||||||||||||||||||
97 | ||||||||||||||||||||||||||||||||||||||
98 | ||||||||||||||||||||||||||||||||||||||
99 | ||||||||||||||||||||||||||||||||||||||
100 |