ABCDEFGHIJKLMNOPQRSTUVWXYZAAABAC
1
Gameboard
rolls (dice1 dice2, landing)
dice1dice2sum
landing spot
Is it a pairvalue of pairlabelcountNormalized
2
16H167H001830.14
3
56C5611C002900.150.17
4
13g134G003970.160.17
5
14H145H0041090.180.17
6
36A369A0051080.180.17
7
11C112C1161200.20.17
8
56N5611N000.17
9
66j6612J162130.07
10
66F6612F163180.09
11
66b6612B164180.09
12
15H156H005220.11
Natural 2-dice probablity chart
13
56C5611C006160.08
14
36N369N007160.08
15
G redirects to C
34H347H008260.13
16
L redirects to N
55b5510B159280.14
17
any roll of 7 goes to h
22F224F1210140.07
i+j show definite bump from being just after magic 7 with H landing spot
18
66j6612J1611180.09
o has almost no hits because it's +7 from magic H that redirects all 7s
19
52H527H0012100.05
h reduced to average
20
16H167H00
c+g and l+n averaged
21
IJKLM22N224N12a170.09
Taking out the bumps from game rules
22
H \N25H257H00b90.05a170.1
23
G-----.O54A549A00c400.2b90.05
24
F|P13E134E00d40.02c20.50.12
25
EDCBA11c112C11e140.07d40.02
26
11e112E11f150.08e140.08
27
66a6612A16g10.01f150.09
28
22e224E12h340.17g20.50.12
29
35M358M00i20.01h12.43750.07
30
26e268E00j30.02i20.01
31
13h134H00k80.04j30.02
32
54A549A00l00k80.05
33
15C156C00m50.03l17.50.1
34
56N5611N00n350.18m50.03
35
14c145C00o20.01n17.50.1
36
12F123F00p100.05o20.01
37
14K145K00p100.06
38
66c6612C16
39
44k448K14Total199
40
11m112M11Doubles460.23115577891
41
13a134A00Singles1530.76884422115
42
26i268I00
43
56d5611D00
44
55n5510N15
45
34H347H00
46
12k123K00
47
26c268C00
48
45n459N00
49
54c549C00
We can use odds of 1:6, because we don't care what d1 is, only that d2 matches it
50
55m5510M15
Binomial distribution of 200 rolls, given 1/6 odds, that at least 46 of them come up "1"
51
64c6410C00
1 - BINOM.DIST(46,199,1/6,1)
52
14h145H000.007aka1:123
53
56c5611C00
54
45n459N00
Now lets check just the first third of the data
55
13a134A00
56
14e145E00Total65
1 - BINOM.DIST(19,65,1/6,1)
1 in X
57
12h123H00Doubles190.29230769230.007aka123
58
54a549A00Singles460.70769230770.003597aka278.031
59
14e145E00
60
36n369N00
61
26f268F00
Repeat this math for our nubmer of 7s
62
11h112H11
binomial of 200 rolls, given 6/36 odds (6 of the 36 possible combinations result in 7), that at most 16 of them come up 7
63
13n134N00
BINOM.DIST(16,199,6/36,1)
64
34h347H000.0003053276.086
65
55b5510B15
66
13f134F00
67
15n156N00
68
14c145C00
69
11e112E11
Repeating dice rolls for first third of game
70
34h347H00labelcountNormalized
71
24n246N001300.23
72
11p112P112150.12
73
34h347H003140.11
74
15n156N004180.14
75
45c459C005250.19
76
14h145H006280.22
77
14n145N00
78
12a123A00
79
56n5611N00
80
23c235C00
81
23h235H00
82
26p268P00
Frequency of doubles of
83
35h358H00labelcountNormalized
84
66d6612D161:1130.28
85
22h224H122:240.09
86
24n246N003:320.04
87
66j6612J164:480.17
88
13n134N005:590.2
89
14c145C006:6100.22
90
23h235H00
91
15n156N00
92
25h257H00
93
24n246N00
94
12a123A00
95
35i358I00
96
46c4610C00
97
21f213F00
98
15n156N00
99
23c235C00
100
12f123F00