
This work is licensed under a Creative Commons Attribution 4.0 International License to Open@RIT & Justin W. Flory. Spreadsheet version: v1.3.2

<Project Name> KEY: Passing, Acceptable, Not met, Unable
to evaluate Check-ins

YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD

Documentation

Code of Conduct

Requirement 1: Quality of writing Few grammatical, technical, and semantic
errors. Easy to understand for a non-native
speaker.

Grammatical, technical, and semantic errors
are noticeable. May be difficult for non-native
speakers to understand.

Grammatical, technical, and semantic errors
are made often. Impossible to understand for
non-native speakers.

Requirement 2: Clarity of
expectations

Rules are understandable. Have a clear
reason for being.

Most rules make sense, may not have a clear
reasoning.

Rules seem completely absurd and
unexplainable. Or they simply don't exist

Requirement 3: Defined structure
for handling enforcement

Step by step guide for dealing with violations,
a clearly defined system of discipline

Process is relatively vague or confusing, but
reasonably written.

No process is defined.

Requirement 4: Two to four people
responsible for handling sensitive
reports related to Code of
Conduct.

Two people, at minimum, designated to
enforce Code of Conduct and actively enforce
it. This reduces bias from a single individual
person.

Someone is responsible for enforcement, but
may be neglecting its enforcement or hard to
reach.

No one is responsible for enforcing the Code
of Conduct

Contributing Guidelines

Requirement 1: Quality of Writing Few grammatical, technical, and semantic
errors. Easy to understand for a non-native
speaker.

Grammatical, technical, and semantic errors
are noticeable. May be difficult for non-native
speakers to understand.

Grammatical, technical, and semantic errors
are made often. Impossible to understand for
non-native speakers.

Requirement 2: Explanation of
Common Practices

Common practices can be interpreted by
someone outside the project, granted they
have knowledge of general open source
project practices.

Common practices require a level of special
background knowledge.

Common practices are exclusively
understood by team members or they don't
exist.

Requirement 3: Guidelines for
Filing an Issue

Anyone can follow the guide and successfully
file an issue that follows a common format.

Guidelines may not fit many issues being filed
but overall provide a unitary theme to issues
submitted.

No one can follow the guide, or the guide
doesn't exist.

Requirement 4: Guidelines for Pull
Request

Anyone familiar with Git and the tools needed
for the project can follow and successfully
submit a pull request

May need project specific knowledge outside
of the guidelines to successfully submit a
request

Pull requests have no guide, making it
difficult for people to submit.

Requirement 5: Timelines and
Expectations

Timelines are assigned to tasks, issues, and
requests and those responsible can easily
understand the expectations therein.

Timelines are assigned, but aren't very
specific, or expectations aren't clearly
communicated.

Timelines are functionally non-existent, no
pretense of expectations.

Requirement 6: Method of Further
Contact

Further contact leads to relevant contact
information, emails, social media, and
possibly phone numbers. This contact
information will lead them to someone.

Further contact leads to one email or account
that someone attends to once in a while.

Further contact leads to nowhere.

Developer Documentation

Requirement 1: Quality of Writing Few grammatical, technical, and semantic
errors. Easy to understand for a non-native
speaker.

Grammatical, technical, and semantic errors
are noticeable. May be difficult for non-native
speakers to understand.

Grammatical, technical, and semantic errors
are made often. Impossible to understand for
non-native speakers.

Requirement 2: Ease of Editing Anyone with internet access can suggest a
change to the documentation.

May have some barrier of entry, but the
community can still submit a suggestion to
the documentation.

Documentation can only be modified by team
members.

Requirement 3: Development
Environment Explanation

The development environment is fully
explained, any dependencies shown, and all
technical setup clarified. The process of
setting up a development environment is
simple.

The developer environment has some
explanation. may have a few missing details,
but gets most of the setup communicated
correctly.
OR
Development environment setup is explained
in detail but is difficult to manage, has
potential of causing issues with other
environments on the user's box, etc.

Development environment is not mentioned.
No way for the developers to easily find out
how to setup the project on their device.

Requirement 4: Project Hierarchy
explanation

The organization of the repositories is
explained, typically visually. With each
component getting a brief explanation of
what it is and how it fits into the architecture.

The organization of the repos is explained,
without visuals. Each component may or may
not get a proper explanation.

Organization is insufficiently explained, no
context for how the components of the
project fit together.

Requirement 5: Regularly Updated Documentation is updated in parallel with
changes to the code.

Documentation is updated frequently, not as
often as the project however.

Documentation is rarely or never updated.

FAQ

Requirement 1: Quality of Writing Few grammatical, technical, and semantic
errors. Easy to understand for a non-native
speaker.

Grammatical, technical, and semantic errors
are noticeable. May be difficult for non-native
speakers to understand.

Grammatical, technical, and semantic errors
are made often. Impossible to understand for
non-native speakers.

Requirement 2: Relevant
Questions

Questions are common ones many new users
and developers ask.

Questions are ones the team thinks users
and developers will have but not
comprehensive.

Questions are obscure and esoteric.

Requirement 3: Clear Answers Answers are detailed, well-phrased, and
helpful.

Answers are decent, may be lacking in detail
or phrased somewhat confusingly, but they
get the message across.

Answers are unhelpful.

READMEs

Requirement 1: Quality of Writing Few grammatical, technical, and semantic
errors. Easy to understand for a non-native
speaker.

Grammatical, technical, and semantic errors
are noticeable. May be difficult for non-native
speakers to understand.

Grammatical, technical, and semantic errors
are made often. Impossible to understand for
non-native speakers.

Requirement 2: General overview
of content

overview covers all major aspects of the
project or component in a well-written, easy-
to-navigate way.

overview covers most aspects of the project
or component, fairly well-written and
organized.

overview doesn't cover any or very few
aspects of the project.

Requirement 3: Installation
Instructions

Provides a step-by-step guide for getting the
content of the repository installed on a
machine.

Provides a guide to installation for most
compatible OSes.

Installation guide is insufficient, does not tell
the user what they need for installation.

Requirement 4: Leads to Other
Sources

Other resources, (i.e. documentation,
website, wiki), are linked in the readme for
further information.

Other resources are linked, but not as many
as there could be.

No resources are linked in the readme.

Requirement 5: Basic Functionality
Explained

How this project or component works / fits
into the larger project is explained in detail.

Project / component is explained, but may be
missing a few key details.

Project / component has no explanation.

Requirement 6: Mission Statement README is clear about what purpose of the
specific repository is and how it fits into other
works.

README explains what project is does, but it
is not clear how connected this repo is with
your other work.

README does not explain purpose or goal of
specific repository.

User Documentation

Requirement 1: Quality of Writing Few grammatical, technical, and semantic
errors. Easy to understand for a non-native
speaker.

Grammatical, technical, and semantic errors
are noticeable. May be difficult for non-native
speakers to understand.

Grammatical, technical, and semantic errors
are made often. Impossible to understand for
non-native speakers.

Requirement 2: Quick Start Guide Quick Start Guide provides an easy to access
way to install, setup, and utilize the project.

Quick Start Guide does not completely cover
the starting process, but gives a sufficient
start.

Quick Start Guide may give a few tips, but
does not cover the starting process in a
meaningful way.

Requirement 3: Project
explanation

Project explanation details the goals of the
project, the state the project is in, and current
work in progress.

Project explanation may be lacking in detail,
but covers all the topics it needs to.

Project explanation is lacking any meaningful
information.

Requirement 4: Organization Documentation is easy to navigate, with a
table of contents, section headings, and
consistent formatting.

Documentation is manageable to navigate,
may be missing a table of contents, section
headings, or consistent formatting.

Documentation is difficult to parse. Lacks
table of contents, headings, and formatting.

Requirement 5: Regularly Updated Documentation is updated in parallel with
changes to functionality.

Documentation is updated frequently, not as
often as the project however.

Documentation is rarely or never updated.

Project Management

Project Board

Requirement 1: Public Access It's easy for anyone looking for the project
board to find it. Within a web search and 1-2
clicks

The project board is challenging to find,
linked from a few places in the project, but
requires looking for it.

Project board is difficult to find, may only be
linked in one place,

Requirement 2: Public Visibility Anyone who wants to post a task can and all
archives of past tasks are easy to find. All
tasks are transparently dealt with.

Project board may require a login and
archives may or may not exist. Some tasks
may not be announced publicly.

Project board is inaccessible to those outside
the project. All tasks made and completed
internally.

Requirement 3: Frequent Use The community is active, tasks dealt with as
they come and questions are answered
quickly and politely.

Community is somewhat active, posts
infrequently, questions are eventually
answered.

Community is seldom active. Questions are
rarely answered.

Requirement 4: Organization Tasks are organized into categories that make
sense and reflect the state the task is in. (i.e.
Backlog, in-progress, done)

Tasks are somewhat organized, but the
categorization is too general to give a sense
of where the task is. (i.e. having only to-do
and done)

Tasks aren't organized in a meaningful way.

Requirement 5: Understandable
tasks

Tasks have a clear goal and method of
completion, written in a clear manner.

Tasks have a goal and method of completion,
but there may be a few information gaps.

Tasks have no measurable goal, no guiding
methods, and written poorly

Requirement 6: Relevant
information available

Any external dependencies and information
that can't fit in the task itself is linked to
within the task.

External dependencies and information is
stated, but may not be linked to.

External dependencies and information is
missing.

Project Discussion

Requirement 1: Public Visibility It's easy for anyone looking for the project
discussion board to find it. Within a web
search and 1-2 clicks

Discussion board is challenging to find, linked
from a few places in the project, but requires
looking for it.

Discussion board is difficult to find, may only
be linked in one place,

Requirement 2: Public
Communication

Anyone who wants to post can and all
archives of past chats are easy to find. All
announcements and decisions are made in
the open.

Discussion board may require a login and
archives may or may not exist. Some
decisions may not be announced in the chat.

Discussion board is inaccessible to those
outside the project. All decisions made
internally.

Requirement 3: Frequent Use The community is active, posts are made daily
and questions are answered quickly and
politely.

Community is somewhat active, posts
infrequently, questions are eventually
answered.

Community is seldom active. Questions are
rarely answered.

This work is licensed under a Creative Commons Attribution 4.0 International License to Open@RIT & Justin W. Flory. Spreadsheet version: v1.3.2

<Project Name> KEY: Passing, Acceptable, Not met, Unable
to evaluate Check-ins

YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD
Requirement 4: Use Cases
Addressed

The chat has separate and clear places for
both users and developers. While there is a
general chat, there are separate, specific, and
clearly organized channels for both.

Chat has some separate channels, but mostly
done in one channel.

All discussion is done in one channel.

"Good first issues" (GFIs)* * GFIs are not required to be in English if your target Open Source community are not native English speakers.

Requirement 1: GFIs exist Between 3-5 GFIs are open and clearly
labeled in all "core" repositories.

A few "core" repositories have GFIs, but
either: (1) not all "core" repos have GFIs, or (2)
"core" repositories have less than three GFIs

There are no open GFIs.

Requirement 2: Assignee ratio At least 60% of GFIs are unassigned and open
for new contributors.

A majority of GFIs are already assigned to
someone.

All GFIs are already assigned, or do not exist.

Requirement 3: Simple language GFIs are written in as simple language as
possible. Jargon or context-specific words are
avoided. Someone who is professionally
proficient in the language used could
understand.

GFIs use some advanced terms, long words,
or uncommon language. A Subject Matter
Expert (S.M.E.) might understand, but a new
contributor may struggle to understand.

GFIs are hard to understand even for a
Subject Matter Expert (S.M.E.).

Requirement 4: Actionable GFIs have clear criteria for completion. An
assignee knows exactly what to do.

There is a general idea of how to complete
the GFI. But there may be unwritten
expectations or missing details.

A GFI has no clear closing criteria. It is vague
and ambiguous about what action is
required.

Requirement 5: Purpose Even if the total impact is small, GFIs have a
clear purpose and meaningful impact to the
project.

GFIs benefit the project in some way, but it is
not immediately clear or there is no plan for
how this work will fit back into the main
project.

GFIs are aimless or low-impact tasks that
have little to no benefit to the project.

Requirement 6: Deadlines GFIs have an approximate deadline or
preferred date for completion. A new
contributor can understand which work is
more important based on your needs of the
product.

Some GFIs have an approximate or exact
deadline, but it is not consistent. Larger tasks
or bigger issues are missing deadlines and
may be misleading to new contributors about
importance.

No GFIs have an approximate timeline or
deadline for when the change is needed. If a
new contributor finds a GFI after some time
passes, it may or may not be relevant to the
project.

Requirement 7: Low commitment GFIs require low commitment for completion.
If someone volunteers for a GFI but does not
complete it, the effect is negligible to the
overall project well-being.

Some GFIs are larger tasks or may require
more time and effort to accomplish. If a GFI is
not completed after some time, it may have a
negative impact to project well-being.

GFIs are big tasks that require a lot of time
and commitment on the contributor's part to
accomplish.

Continuous Integration
and Health Checks

Testing

Requirement 1: Business Logic Business logic is always unit tested. Most of the business logic is unit tested, but
not all of it.

Minority or none of the business logic is unit
tested.

Requirement 2: Functional Tests End to end test of functionality included with
the unit tests, covers all aspects of user
functionality.

End to end test of functionality exists, but
doesn't cover every feature and use of the
software.

End to end test of functionality is minimal or
entirely absent.

Requirement 3: Run in CI and
Locally

Unit tests automatically run in CI, but there's
documentation for how to run the tests
locally.

Unit tests run in CI, but there may not be
extensive documentation on how to run
those tests locally.

Unit tests are not implemented in CI and no
documentation for running locally.

Requirement 4: Utilizes Code
Coverage Tool

Have a code coverage tool implemented into
the testing.

Code coverage tool is implemented but only
for certain parts of the project.

There is no code coverage tool implemented.

Requirement 5: Efficiently Run The tests run in an acceptable amount of
time and in a reasonably optimized way.

Tests run in an average time. Tests are poorly optimized and take
inappropriate amounts of time.

Code Base Health and
Overall Maintainability

Requirement 1: Not a Mono-
Repository

Code is separate into appropriately
segmented repositories.

Code base is separated into some separate
repositories but repositories are quite large,
has a large variety of functionality grouped
together in a disorganized way.

All code is shoved into one repository.
Repository serves a large variety of
functionality which would be better set up as
separate projects working together.

Requirement 2: Sensible
Architecture

The structure of the code is obvious from first
viewing and with explanation.

The code structure may be overbearing at
first, but has an explanation that helps
developers understand.

The code structure is obtuse and not
explained.

Requirement 3: Style Guidelines Code follows a set of style guidelines that are
laid out and enforced by the CI

Code mostly follows a guidelines, but there
may be places where it's violated.

Code doesn't follow any sense of guidelines
or standards.

Requirement 4: Pass a "Bus Factor"
Test

Code is written in a way where there is a clear
way to on-board a future contributor or team
member on the project code.

Some parts of the code have to be explained
by a specific maintainer or team member for
others to understand them.

If a particular developer on the team was hit
by a bus tomorrow, the project would be at
risk.

Requirement 5: Hacks Kept to a
Minimum

Code is self-documented and easily
understandable, but code outside of the
guidelines is the exception, not the rule.
Hacks are marked as so, infrequently used,
and explained with inline commenting.

There is a significant amount of hacks but are
marked as so and have inline comments
marking and explaining them.

Majority of the code is outside the guidelines,
no way to measure how much or where this
code is.

Continuous Integration (CI)

Requirement 1: CI is easy to access
independently

CI can run in a simple command. CI can run in a few complicated commands,
but is accessible.

CI is cumbersome to run, taking several steps
and a long time to simply set up.

Requirement 2: Matches required
formatting

CI makes sure that code follows the required
format and guidelines.

CI has a few guidelines implemented, but
may not have all of them or may be too
lenient on enforcement.

CI has no guidelines implemented.

Requirement 3: Integrated directly
with source control

CI is integrated with source control, can
immediately do a pull request or commit
after a successful test.

CI is somewhat integrated with source
control, but may need a few time consuming
steps to work properly.

CI is completely divorced from source control.

Requirement 4: Runs efficiently CI runs in a reasonable amount of time. CI runs in an average amount of time, but not
optimized.

CI takes way too long to execute.

Requirement 5: Quality of Output CI gives the developer useful feedback, any
issues encountered are explained and they
can see where they made a mistake.

CI gives the developer some feedback, some
issues explained, some just stated without
giving the developer a guide to how to
resolve.

CI gives very basic feedback, maybe only a
letter grade.

Workflow

Pull Request Workflow

Requirement 1: Clear format A clear format is defined, frequently used,
and easy to follow for any outsider to make a
pull request.

A format is defined, used occasionally, and is
easy to follow for a pull request.

No format is defined, or it's rarely used.

Requirement 2: Peer Reviews Every pull request is reviewed by a
substantial number of people before it is
merged with the project.

Most pull requests get reviewed, but may not
have only a single reviewer or lazy reviewing
process.

Nothing is reviewed.

Requirement 3: Regular Use in
Development

Pull requests are used by developers except
in the case of an emergency hotfix.

Pull requests are the most common method,
but some developers still push straight to
master.

Pull requests are not used often.

Community Outreach

Developer Blog

Requirement 1: Detailed
Announcements

All major announcements and releases are
on the blog along with regular updates about
progress on the project.

Most major announcements and releases are
on the blog, updates are semi-frequent.

Most announcements are entirely ignored
and no updates are posted in between.

Requirement 2: Archive of Posts It's easy for anyone to check the post history
to find the old posts and read about
announcements and releases of the past.

The archive may be flushed after a certain
point or certain posts are never archived, but
the majority of the information is available.

No archive exists, or the one that does
doesn't have any posts in it.

Requirement 3: Demonstrates
General Direction of the Project

The announcements, updates, and releases
all briefly detail why they add what they add,
giving an overall impression of direction.

The detail of why may be missing from a few
posts, but the blog still gives enough
information to form a direction of the project.

No direction or reasoning behind decisions is
given.

Requirement 4: Explains the
Current Goals of the Project

The most recent posts detail the overarching
goals of the project and which ones have
been met since last announcement.

Some goals may be listed in the most recent
posts, but the mention of the goals already
met may be brief or unclear.

Goals aren't listed or mentioned in the blog.

Social Media

Requirement 1: Announcements
Posted

Either short form of the blog posts, or linking
to the blog post announcements, all
announcements are posted on the social
media platform.

Most major announcements are mentioned
on the social media account.

No major announcements are posted on
social media.

Requirement 2: Communicates
with Users

When people engage with the account,
someone operating the account responds
when necessary.

Replies to users are infrequent, but they
happen.

The account is silent on communicating with
users.

Requirement 3: Regularly Updated Posts are regular and communicate that the
project is active.

Posts aren't everyday, but still enough to tell
the account is active.

Posts are not made regularly.

Requirement 4: Uses a Large Scale
Social Media Website

The social media platform is a large one, (i.e.
twitter)

The social media platform of choice may be a
bit more niche.

The social media platform is entirely obscure.

Upstream* * May not apply to all teams.

Requirement 1: Offer Support of
Upstream Development

Upstream development is supplemented by
developers on the team.

Some upstream development is done but it
isn't actively encouraged by the organization.

No upstream development is attempted.

Requirement 2: Contributes
Feedback and Bugs to Upstream

Any bugs, usability problems, and issues
encountered with the upstream software are
reported by the team.

Bugs, usability problems, and issues are
mostly reported, but some are simply dealt
with internally.

No problems encountered are reported to
the upstream project.

Requirement 3: Feedback loops
between groups

Upstream gives feedback, implementation
advice, and development assistance to the
project as the project gives those resources in
turn.

Upstream is somewhat involved in the
project, and the project is somewhat involved
in the upstream, but the relationship isn't
developed.

There is no identifiable loop between the
upstream and the project.

Requirement 4: Identifiable
Pathway for Contribution

A clear way to contribute to the Upstream
and project exists.

Contributing to the upstream and project has
a guide of some kind, but it's fairly barebone.

No way to identify contributions to the
upstream and project.

This work is licensed under a Creative Commons Attribution 4.0 International License to Open@RIT & Justin W. Flory. Spreadsheet version: v1.3.2

<Project Name> KEY: Passing, Acceptable, Not met, Unable
to evaluate Check-ins

YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD YYYY-MM-DD

Website

Requirement 1: Explains the
Project

Gives a detailed, easy to understand and well
written explanation of the project and states
that it is open source.

Gives a satisfactory summary of the project
and states that it is open source.

Doesn't detail the project in a significant way
and does not state that it is open source.

Requirement 2: Leads Developers
to Get Involved

Website has a clear section or link labelled for
developers (i.e. a navigation tab that says
"Get Involved")

Website has a section for developers, but it
may not be immediately apparent where it is.

Website doesn't have a section for developers
or it is near impossible to find.

Requirement 3: Leads Users to
Installation and Guides

Website has a clear path to installation and a
section for users.

Website has an installation section, but may
not be upfront about it.

Website has no installation resources.

Requirement 4: Links to Resources
(github, documentation, social
media)

Links to other resources that can be used by
both users and developers are immediately
available and apparent

Links to other resources exist, but there
aren't many listed.

No links to any external resources exist on
the website.

Requirement 5: Presentation The website is professionally designed and
isn't prone to navigation or design pitfalls.

The website has an okay sense of design and
navigation, not perfect, but it works.

The design of this website is comparable to
1998 standards.

Requirement 6: State the License The website mentions the license explicitly on
the front page.

Website has the license but isn't on the front
page.

Website is lacking detail of the project's open
source license

Version # Date Description of changes

1.3.0 2020-08-28

- Rename "Compartmentalization of tasks" to "Good first issues"
- Add requirement for 3-5 GFIs ideally
- Add requirement for using simple language for GFIs
- Revise requirement for "Actionable" to be clear about closing criteria for a GFI
- Revise requirement "Defined Goals" to "Purpose", where GFIs have a meaningful impact to the project.
- Revise requirement "Prioritization method" to "Deadlines", to emphasize the importance of giving a fixed deadline before a task expires, and also motivates contributors.
- Strike "Introductory Tasks" requirement, as this requirement as more or less become the Component being measured (good first issues!)
- Revise "Ease of Responsibility" requirement to "Low commitment" to better explain that someone should always be able to walk away from something, no pressure.

1.3.1 2020-11-09 - Run spell-check on all cells, fix several typos.

1.3.2 2024-04-28 - Change "<Team Name>" to "<Project Name>" since the project-centered evaluation may resonate with a wider audience over the UNICEF Venture Fund-specific language.

