ABCDEFGHIJKLMNOPQRSTUVWXYZAAABACADAE
1
Please propose two papers you are interested in using for your course project.
Mark this box if this is your "priority" paper
2
Mark this box if it is a paper that was not explicitly listed on the project information sheet
3
Preferred Presentation Date(s) from 11/30, 12/2, 12/7, 12/9
Paper approved by professor
4
Student NamePaper TitleAuthorsYearConferenceLink to PaperProfessor's Comments
Assigned Presentation Date
5
Example StudentExample Paper Title 1Example Author1, Example Author2, Example Author62019
https://drive.google.com/file/d/1o9pwSHQeOf2tPlboR-ADr6GkjT-043Hv/view?usp=sharing
6
Example Paper Title 2Example Author4, Example Author5, Example Author62020
https://drive.google.com/file/d/1yjP9EynmkPeOjTO_1xcs7ZdRiMajyuRx/view?usp=sharing
7
Nick CohenFinding Counterfactual Explanations through Constraint RelaxationsSharmi Dev Gupta, Begum Genc, and Barry O'Sullivan2022FLOC 2022
https://arxiv.org/pdf/2204.03429.pdf
11/21
8
Structured Set Variable Domains in Bayesian Network Structure Learning2022FLOC 2022
https://drops.dagstuhl.de/opus/volltexte/2022/16666/pdf/LIPIcs-CP-2022-37.pdf
accept
9
Simon Guo
Combining Reinforcement Learning and Constraint Programming for Sequence-Generation Tasks with Hard Constraints
Fulya Trösser, Simon de Givry and George KatsirelosCP 2022
https://drops.dagstuhl.de/opus/volltexte/2022/16659/pdf/LIPIcs-CP-2022-30.pdf
11/28
10
Exploiting Functional Constraints in Automatic Dominance Breaking for Constraint Optimization
Jimmy H. M. Lee, Allen Z. Zhong2022CP 2022
https://drops.dagstuhl.de/opus/volltexte/2022/16660/pdf/LIPIcs-CP-2022-31.pdf
accept
11
Jiapeng ZhaoAutomated SAT Problem Feature Extraction using Convolutional AutoencodersMarco Dalla, Andrea Visentin and Barry O'Sullivan2022CP2022
https://drive.google.com/file/d/1bvF_A0ruQ408FTn1x_5JVHr2-bw1qsYv/view?usp=sharing
11/21accept
12
Graph Neural Networks for Maximum Constraint SatisfactionJan Tönshoff, Martin Ritzert, Hinrikus Wolf and Martin Grohe2021Frontiers 2021
https://drive.google.com/file/d/1Dn_ZCu39Kke3wochHNrTAiQ4xHRFLN1b/view
13
Xiafa WuFinding Counterfactual Explanations through Constraint RelaxationsSharmi Dev Gupta, Begum Genc and Barry O'Sullivan2022FLOC 2022
https://arxiv.org/pdf/2204.03429v1.pdf
11/28accept
14
Verifying Equivalence Properties of Neural Networks with ReLU Activation FunctionsMarko Kleine Büning, Philipp Kern, Carsten Sinz.2020CP2020
https://dl.acm.org/doi/10.1007/978-3-030-58475-7_50
15
Keonho LeeGraph Neural Networks for Maximum Constraint SatisfactionJan Tönshoff, Martin Ritzert, Hinrikus Wolf and Martin Grohe2021Frontiers 2021
https://drive.google.com/file/d/1Dn_ZCu39Kke3wochHNrTAiQ4xHRFLN1b/view
11/28accept
16
CSP Beyond Tractable Constraint LanguagesJan Dreier, Sebastian Ordyniak and Stefan Szeider2022FLOC 2022
https://drops.dagstuhl.de/opus/volltexte/2022/16649/pdf/LIPIcs-CP-2022-20.pdf
possible
17
Conan TruongNSNet: A General Neural Probabilistic Framework for Satisfiability Problems
Zhaoyu Li, Xujie Si
2022NeurIPS 2022
https://arxiv.org/abs/2211.03880
11/30
How about this paper https://arxiv.org/pdf/2211.03880.pdf or Combining reinforcement learning with constraint programming on the list.
Yes to https://arxiv.org/pdf/2211.03880.pdf
18
Structured Set Variable Domains in Bayesian Network Structure LearningFulya Trösser, Simon de Givry and George Katsirelos2022CP2022
https://drops.dagstuhl.de/opus/volltexte/2022/16666/pdf/LIPIcs-CP-2022-37.pdf
19
Raj MohantyVerifying Equivalence Properties of Neural Networks with ReLU Activation FunctionsMarko Kleine Büning, Philipp Kern, Carsten Sinz 2020CP2020
https://link.springer.com/chapter/10.1007/978-3-030-58475-7_50
11/30not related
20
One Model, Any CSP: Graph Neural Networks as Fast Global Search Heuristics for Constraint SatisfactionJan Tönshoff, Martin Ritzert, Hinrikus Wolf and Martin Grohe2022
Not published yet
https://arxiv.org/abs/2208.10227
accept
21
Chase OvercashDeep Attentive Belief Propagation: Integrating Reasoning and Learning for Solving Constraint Optimization ProblemsYanchen Deng, Shufeng Kong, Caihua Liu, Bo An2022NEURIPS 2022https://drive.google.com/file/d/1OQVZwugdCyEbn-2atmWwDmJoZa5GreBg/view?usp=share_link11/30accept
22
Combining Reinforcement Learning and Constraint Programming for Sequence-Generation Tasks with Hard Constraints
Daphné Lafleur, Sarath Chandar, Gilles Pesant
CP 2022
https://drops.dagstuhl.de/opus/volltexte/2022/16659/pdf/LIPIcs-CP-2022-30.pdf
23
Wenbo LiLearning MAX-SAT Models from Examples using Genetic Algorithms and Knowledge Compilation
Senne Berden, Mohit Kumar, Samuel Kolb and Tias Guns
2022cp 2022
https://drive.google.com/file/d/13mGrSk_PaWzL4NPXn_Uke5ZXAMXQmlt6/view?usp=share_link
11/30accept
24
Combining Reinforcement Learning and Constraint Programming for Sequence-Generation Tasks with Hard Constraints
Daphné Lafleur, Sarath Chandar and Gilles Pesant
2022cp 2022
https://drops.dagstuhl.de/opus/volltexte/2022/16659/pdf/LIPIcs-CP-2022-30.pdf
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100