
Microcode Compiler Settings

The compiler needs to know the size of the ROM 
chips you're using. Enter the number of bits for 
the address and the number of bits for the data.

For example, an AT28C256 is a 32Kx8 EEPROM. It 
has 15 bits for the address and 8 bits for the data.

IMPORTANT: For the script to run, you need to enable the Drive API. 

To do this, select the Extensions->App Script menu. A new tab will open 
up with the compiler's code in it. 

In the left column, click on Services. A dialog will appear. Scroll down to 
"Drive API". Select it, then click the Add button.

You can then close the browser tab.

ROM Chip Address Bits: 13

ROM Chip Data Width: 8

Specify the output file name. Include a number 
sign (#) which will be used to index multiple files. 
Files will be written to your Google Drive.

Output File Name Pattern: microcode#.rom
File Format: ROM Binary



Address (MSB..LSB) Data (MSB..LSB, ROM 1..ROM n)

@

Field

Istr 
Reg 
Bit 0 IRQ Running Unused

Condition 
True

Op 
Code Cycle

MC 
ALU 
Op 

Code 
(12 

means 
use IR)

Reg 
Left 
Addr 

(0 
means 
use IR, 

3 
means 
R15, 2 
means 
R14, 1 
means 

R13)

Reg 
Left 
R/~W

Reg 
Left 
~OE

Reg 
Right 
~OE 
and 
~CE

Reset 
Cycle 

Counter

Set State 
(1 is 

Running
, 2 is Int 
Hdlr, 3 is 
Exit Int 

Hdlr)

Data Bus 
Latch 

~Enable

Data 
Bus 

Latch 
~OE

Addr 
Bus 

Latch 
~Enable

Addr 
Bus 

Latch 
~OE

Instr. 
Reg 

Latch 
~Enable

CC 
Latch 

~Enable

IR 
Immediate 
8 Bits ~OE

IR 
Imme
diate 
4 Bits 
~OE

Mem 
R/~W

Mem 
~OE Unused Comment

Bit Width 1 1 1 2 1 4 3 4 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2
Default Value x 0 1 x x x x 12 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0

Startup x 0 x 0 6 3 1 0 0 1 0 1 Set ALU to output 0
x 0 x 1 6 3 0 1 1 0 1 0 Latch the 0 onto the data bus. Write to R15
x 0 2 6 3 1 0 0 Finish the write to R15
x 0 x 3 1 0 0 0 Write the 0 to R13 (zero register) too
x 0 x 4 1 1 1 1 0 0 Finish the write; set running state; reset cycle counter

Instruction Fetch x 0 7 3 1 0 0 0 Read PC, set ALU to output A, route it to the address bus
x 1 0 0 1 0 Read memory, latch the instruction into the instruction register
x 2 0 3 1 0 0 0 Read the PC, add 1, latch it onto the address and data buses
x 3 3 0 0 0 Write the incremented PC back to the PC

Load Immediate 8 bit 0 4 15 0 1 0 0 0 Route Immediate value to ALU B, set ALU to output B, write to register, and reset cycle counter
LD Ra,#imm

Software Interrupt 0 1 4 13 2 1 0 2 0 1 0 0 Put SP minus one on the address bus and data latch
SWI #n 0 1 5 2 0 1 1 0 Write SP-1 to SP
n must be even 0 1 6 7 3 1 0 0 0 0 Put PC on the data bus and start a memory write

0 1 7 7 3 0 1 0 0 0 Put immediate data on the data bus and write it to PC

Return from Interrupt 1 1 4 7 2 1 0 0 0 1 0 Put SP on the address bus. Start a memory read.
RTI 1 1 5 3 0 1 0 1 0 Hold the address on the bus. Start a write into PC

1 1 6 0 2 1 0 0 0 Put SP+1 on the data bus
1 1 7 2 0 1 3 1 0 Write SP+1 into SP

Load Indirect 4 bit offset 2 4 15 1 0 0 0 1 0 Put 4 immediate bits on ALU B, set ALU to output B, latch it into data latch. Ra is read but not used.
LD Ra,off[Rb] 2 5 3 0 1 0 0 Add the 4 bit immediate value, which is now on the data bus, to Rb and latch it onto the Address bus. Start a memory read.

2 6 0 1 1 1 0 1 0 Read the memory and write it to Ra

Store Indirect 4 bit offset 3 4 3 1 0 0 0 0 Read Ra, add the 4 bit immediate value, latch onto address bus
ST off[Ra],Rb 3 5 15 0 1 0 0 0 0 Read Rb, write to memory, reset cycle counter

ALU op w/save to Ra 4 4 1 0 0 0 0 Read Ra and Rb, latch ALU output to data bus, latch condition codes
XXX Ra,Rb 4 5 0 1 0 Put latched data on bus, write to Ra, reset cycle counter

ALU op w/o save to Ra 5 4 1 0 0 1 0 Read Ra and Rb, latch condition codes, reset cycle counter
XXX Ra,Rb

ALU op w/immediate value 16 bit 6 4 0 0 0 1 0 PC was left on the addr bus by the instruction load. Read the immediate value from memory, read right reg, do ALU op, latch it onto the data bus
XXX Ra,Rb,#n16 6 5 0 0 0 1 0 1 0 Save the ALU result in left reg

6 6 0 3 1 0 0 Add one to the PC
6 7 0 3 0 1 1 0 Save the incremented PC

Call 0 7 4 13 2 1 0 0 1 0 0 Put SP minus one on the address bus and data latch
CALL Rb 0 7 5 2 0 1 1 0 Write SP-1 to SP

0 7 6 7 1 0 0 0 0 Put Ra on the data bus and start a memory write (for a CALL, Ra is the PC)
0 7 7 15 0 0 1 0 0 Put Rb on the data bus and write it to Ra (Ra must be PC)

Pop/Return 1 7 4 7 2 1 0 0 0 1 0 Put SP on the address bus. Start a memory read.
POP Ra 1 7 5 0 1 0 1 0 Hold the address on the bus. Start a write into Ra

1 7 6 0 2 1 0 0 0 Put SP+1 on the data bus
1 7 7 2 0 1 1 0 Write SP+1 into SP

Branch, condition true 1 8 4 3 3 1 0 0 PC to ALU A, immediate data to ALU B, ALU op A+B, latch result into data
Bcc offset 1 8 5 3 0 1 0 Write latched data to PC, reset cycle counter

Branch, condition false 0 8 4 1 Reset cycle counter
Bcc offset



Compilation complete.
ROM required: 8Kx8; 3 chips.


