A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Question | Asker Name | Asker Email | Answer(s) | ||||||||||||||||||||||
2 | what are the techniques used to reduce the recall or precision if overfit in logistic regression? | Veeru(VeeraNancharaiah Javvaji) | jsriveeru@gmail.com | live answered | ||||||||||||||||||||||
3 | when will groups for major project be formed? | SUVAIN G | brusuvain@gmail.com | live answered | ||||||||||||||||||||||
4 | hello, i had missed the last doubt class and the last session due to work, and im still lagging behind in the projects, could you help me? | Karan Karnik | karankarnik47@gmail.com | live answered | ||||||||||||||||||||||
5 | spam classification | Veeru(VeeraNancharaiah Javvaji) | jsriveeru@gmail.com | live answered | ||||||||||||||||||||||
6 | Are models always available for free or there is any licensing as well? for e.g. by corporates? | Shreyas Phatak | hishreyas@gmail.com | live answered | ||||||||||||||||||||||
7 | Is it possible to have few layers in one language and few in some other language. Eg. can we create a model where 3 layers are in C++ but rest 2 in Python. | Manoj Kumar | manoj.gupta.91@gmail.com | live answered | ||||||||||||||||||||||
8 | in deep learning what is the alternative for ML clustering (un-supervised)? wanted to know any technique for anomaly detection in deep learning ? | sudhir shetty | sudhir.m.shetty@gmail.com | live answered | ||||||||||||||||||||||
9 | We need to tweak threshold based on the requirement , to increase precesion we need to increae threshold if we want to increase recall we need to decrease the threshold | arpit | arpitvw16@gmail.com | live answered | ||||||||||||||||||||||
10 | ? | arpit | arpitvw16@gmail.com | live answered | ||||||||||||||||||||||
11 | can you explain lambda * theta and 1-lambda * theta**2 by theta you mean the weights? | Srini Boddu | siliconfish@yahoo.com | live answered | ||||||||||||||||||||||
12 | In regularization, are we using any model parameter like C? | Veeru(VeeraNancharaiah Javvaji) | jsriveeru@gmail.com | live answered | ||||||||||||||||||||||
13 | followup question - Why larger weight is equated to overfitting? how did we arrive at that? | Puneet Rastogi | puneetrstg@gmail.com | live answered | ||||||||||||||||||||||
14 | Will you please guide me on deploying models on Mobile Apps? | VED | parmarvedpro5@gmail.com | The workflow can be broken down into following basic steps: Training a machine learning model on a local system. Wrapping the inference logic into a flask application. Using docker to containerize the flask application. Hosting the docker container on an AWS ec2 instance and consuming the web-service. | ||||||||||||||||||||||
15 | SGD (two statements from book) (1) Note that since instances are picked randomly, some instances may be picked several times per epoch, while others may not be picked at all. (2) If you want to be sure that the algorithm goes through every instance at each epoch, another approach is to shuffle the training set. Does second statement says about going through all instances or not to repeat an instance in single epoch because SGD does not compute all instances it works with one random instance in each step. So not to repeat an instance in single epoch is what I understood from this statement. | Manoj Kumar | manoj.gupta.91@gmail.com | live answered | ||||||||||||||||||||||
16 | I believe L1, L2 and Elastic net regularization technique also works with Neural Networksas they are conceptually related to Gradient Descent? Is that correct | Puneet Rastogi | puneetrstg@gmail.com | live answered | ||||||||||||||||||||||
17 | Logistic Regression is a classification problem ... so can we use confusion matrix | Divya Pathak | dev.feb88@gmail.com | live answered | ||||||||||||||||||||||
18 | I am confused with the larger weight resulting in overfitting, when we apply gradient descent, weights will be learnt so that appropriate model which represent the data. In the query regarding the larger weights are we referring to the initilization to larger values or larger step size. We only perform normalization on the features not on weights. So my doubt is how is larger weight resulting in overfitting. | Vinod | vinods.kumar@gmail.com | live answered | ||||||||||||||||||||||
19 | no I got this doubt during the last answer | Vinod | vinods.kumar@gmail.com | live answered | ||||||||||||||||||||||
20 | we added regularization to prevent over fitting | Vinod | vinods.kumar@gmail.com | live answered | ||||||||||||||||||||||
21 | One qq -so rate of change, we need to keep as low as possible and almost consistent? | Rajiv | krajiv.2018@gmail.com | live answered | ||||||||||||||||||||||
22 | now we are saying the regularization is adding to overfitting | Vinod | vinods.kumar@gmail.com | live answered | ||||||||||||||||||||||
23 | OK got it | Vinod | vinods.kumar@gmail.com | |||||||||||||||||||||||
24 | you explanation regarding higher weight move towards overfitting , if python or any other language is having round off till 5 digit or any number of digit , after decimal in that case also there will bemore degree of freedom , | arpit | arpitvw16@gmail.com | live answered | ||||||||||||||||||||||
25 | what is feature store , | kunal | kupadhy@gmail.com | live answered | ||||||||||||||||||||||
26 | is it part of package ? or we need to do it manually ? | arpit | arpitvw16@gmail.com | live answered | ||||||||||||||||||||||
27 | then how it is different from clipping ? | arpit | arpitvw16@gmail.com | live answered | ||||||||||||||||||||||
28 | tflite if for moblie application rt? | arpit | arpitvw16@gmail.com | live answered | ||||||||||||||||||||||
29 | *is | arpit | arpitvw16@gmail.com | live answered | ||||||||||||||||||||||
30 | as you mentioned tflite , one query i have | arpit | arpitvw16@gmail.com | live answered | ||||||||||||||||||||||
31 | as we going to deploy any model to mobile , example : face filters that we have in mobile ? | arpit | arpitvw16@gmail.com | live answered | ||||||||||||||||||||||
32 | Sorry, one dumb question. Is Optimizers all about weight? and Gradient Descent furhter optimize? | Rajiv | krajiv.2018@gmail.com | live answered | ||||||||||||||||||||||
33 | Is it better to use SGD or Mini-batch SGD to reach to global minima. Since both of these may not settle down to perfect global minima they may settle somewhere global minima. Once we are done we can use GD to reach to exact global minima. | Manoj Kumar | manoj.gupta.91@gmail.com | live answered | ||||||||||||||||||||||
34 | What happens if GD hits a local minima | Lalit.Kathuria | lalit.kathuria76@gmail.com | live answered | ||||||||||||||||||||||
35 | qq - Rolling ball once reached surface & with friction, the accelaration will come down? Slope will be less | Rajiv | krajiv.2018@gmail.com | live answered | ||||||||||||||||||||||
36 | Can’t we obtain this just my having a dynamic learning rate which start with a high value and then decreases as we get closer to the global minima? | Domenico Fioravanti | nicodom@gmail.com | live answered | ||||||||||||||||||||||
37 | *just by having | Domenico Fioravanti | nicodom@gmail.com | live answered | ||||||||||||||||||||||
38 | Sandeep, I saw equation like m<-Bm- (minus)n.. but in your case it's positive. can you please brief on plus vs minus? | Rajiv | krajiv.2018@gmail.com | live answered | ||||||||||||||||||||||
39 | in Gradient descent, when learning rate was higher, we could jump over the minima, so how is the momentum handling this. | Vinod | vinods.kumar@gmail.com | live answered | ||||||||||||||||||||||
40 | should default optimizer to be "momentum"? May be you will be covering next. if yes, please ignore my question. | Rajiv | krajiv.2018@gmail.com | live answered | ||||||||||||||||||||||
41 | isn't it good always to use momentum optimiser against SGD? | Pushkraj Gaikwad | gaikwad.pushkraj@gmail.com | live answered | ||||||||||||||||||||||
42 | If we are using GD for Linear Regression how can we handle case of local minima? | Lalit.Kathuria | lalit.kathuria76@gmail.com | live answered | ||||||||||||||||||||||
43 | NAG would work only if momentum vector pointing in right direction and then only NAG would work perfect? So, assuming we need to know momentum vector is pointing in right direction before picking NAG? | Rajiv | krajiv.2018@gmail.com | live answered | ||||||||||||||||||||||
44 | is this newton raphson method? | Karan Karnik | karankarnik47@gmail.com | live answered | ||||||||||||||||||||||
45 | so we have to select the nearest point from the optimum? | shalini | shalini.cse16@nituk.ac.in | live answered | ||||||||||||||||||||||
46 | Sir please explain cross product? | VED | parmarvedpro5@gmail.com | live answered | ||||||||||||||||||||||
47 | Sorry Sandeep, not able to catch much over AdaGrad. Can you please make it simpler to understand? May be it's just a problem for me. | Rajiv | krajiv.2018@gmail.com | live answered | ||||||||||||||||||||||
48 | 2 doubts Sandeep: What happens if data is dense, and also the learning rate will shrink over time ...how does ADagrad deal with it | anmolck | anmolck@gmail.com | live answered | ||||||||||||||||||||||
49 | so what is the summary in terms of which optimizer should be used in the first place ? | Prakhar Prasad | prakhar.prasad@gmail.com | live answered | ||||||||||||||||||||||
50 | What I meant -> It has lower learning rate for frequent features and higher learning rate for infrequent features | anmolck | anmolck@gmail.com | live answered | ||||||||||||||||||||||
51 | So this is ok for non-dense data but for dense data...it cant do the jumps | anmolck | anmolck@gmail.com | live answered | ||||||||||||||||||||||
52 | ||||||||||||||||||||||||||
53 | ||||||||||||||||||||||||||
54 | ||||||||||||||||||||||||||
55 | ||||||||||||||||||||||||||
56 | ||||||||||||||||||||||||||
57 | ||||||||||||||||||||||||||
58 | ||||||||||||||||||||||||||
59 | ||||||||||||||||||||||||||
60 | ||||||||||||||||||||||||||
61 | ||||||||||||||||||||||||||
62 | ||||||||||||||||||||||||||
63 | ||||||||||||||||||||||||||
64 | ||||||||||||||||||||||||||
65 | ||||||||||||||||||||||||||
66 | ||||||||||||||||||||||||||
67 | ||||||||||||||||||||||||||
68 | ||||||||||||||||||||||||||
69 | ||||||||||||||||||||||||||
70 | ||||||||||||||||||||||||||
71 | ||||||||||||||||||||||||||
72 | ||||||||||||||||||||||||||
73 | ||||||||||||||||||||||||||
74 | ||||||||||||||||||||||||||
75 | ||||||||||||||||||||||||||
76 | ||||||||||||||||||||||||||
77 | ||||||||||||||||||||||||||
78 | ||||||||||||||||||||||||||
79 | ||||||||||||||||||||||||||
80 | ||||||||||||||||||||||||||
81 | ||||||||||||||||||||||||||
82 | ||||||||||||||||||||||||||
83 | ||||||||||||||||||||||||||
84 | ||||||||||||||||||||||||||
85 | ||||||||||||||||||||||||||
86 | ||||||||||||||||||||||||||
87 | ||||||||||||||||||||||||||
88 | ||||||||||||||||||||||||||
89 | ||||||||||||||||||||||||||
90 | ||||||||||||||||||||||||||
91 | ||||||||||||||||||||||||||
92 | ||||||||||||||||||||||||||
93 | ||||||||||||||||||||||||||
94 | ||||||||||||||||||||||||||
95 | ||||||||||||||||||||||||||
96 | ||||||||||||||||||||||||||
97 | ||||||||||||||||||||||||||
98 | ||||||||||||||||||||||||||
99 | ||||||||||||||||||||||||||
100 |