A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | AA | AB | AC | AD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Model Name | Methods | Intervention Assumptions | Modeling Group | Link | Misc. | ||||||||||||||||||||||||
2 | GT_CHHS | ABM | This model assumes that once stay-at-home orders are lifted, contact rates will gradually increase. It also assumes that households containing symptomatic cases will self-quarantine. | Georgia Institute of Technology, Center for Health and Humanitarian Systems | https://github.com/pkeskinocak/COVID19GA | Georgia forecasts only; For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/GT_CHHS-COVID19/metadata-GT_CHHS-COVID19.txt | ||||||||||||||||||||||||
3 | NotreDame-FRED | ABM | These projections assume that current interventions will not change during the forecasted period. | Notre Dame University | https://github.com/confunguido/covid19_ND_forecasting | State-level forecasts only; For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/NotreDame-FRED/metadata-NotreDame-FRED.txt | ||||||||||||||||||||||||
4 | CDDEP | ABM | Center for Disease Dynamics, Economics & Policy | https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/CDDEP-GlobalAgentBasedModel/metadata-CDDEP-GlobalAgentBasedModel.txt | ||||||||||||||||||||||||||
5 | Multiagents | ABM | Quantori modeling | https://github.com/reichlab/covid19-forecast-hub/tree/master/data-processed/Quantori-Multiagents | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/Quantori-Multiagents/metadata-Quantori-Multiagents.txt | |||||||||||||||||||||||||
6 | Imperial | stochastic compartmental models & ABMs | These projections do not make specific assumptions about which interventions have been implemented or will remain in place. | Imperial College | https://mrc-ide.github.io/covid19-short-term-forecasts/index.html | More on methods: ensembles of mechanistic transmission models, fit to different parameter assumptions; national-level forecasts only; see also: https://www.nature.com/articles/d41586-020-01003-6; for even more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/Imperial-ensemble2/metadata-Imperial-ensemble2.txt | ||||||||||||||||||||||||
7 | Auquan | SEIR | These projections do not make specific assumptions about which interventions have been implemented or will remain in place. | Auquan Data Science | https://covid19-infection-model.auquan.com/ | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/Auquan-SEIR/metadata-Auquan-SEIR.txt | ||||||||||||||||||||||||
8 | Columbia | Metapopulation SEIR | This model assumes that contact rates will increase 5% per week over the next two weeks. The reproductive number is then set to 1 for the remainder of the projection period. | Columbia University | https://blogs.cuit.columbia.edu/jls106/publications/covid-19-findings-simulations/ | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/CU-select/metadata-CU-select.txt | ||||||||||||||||||||||||
9 | CAN | SEIR | This model assumes that the effects of current interventions are reflected in the observed data and that those effects will continue going forward. | COVID Act Now | https://covidactnow.org/ | State-level forecasts only | ||||||||||||||||||||||||
10 | Covid19Sim | SEIR | This model is based on assumptions about how levels of social distancing will change in the future. It assumes a 20% increase in mobility as each state reopens. | COVID-19 Simulator Consortium | https://www.covid19sim.org/ | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/Covid19Sim-Simulator/metadata-Covid19Sim-Simulator.txt | ||||||||||||||||||||||||
11 | CovidScenarioPipeline | stochastic metapopulation SEIR | This model assumes that the effectiveness of interventions is reduced after shelter-in-place orders are lifted. | Johns Hopkins University, Infectious Disease Dynamics Lab | https://github.com/HopkinsIDD/COVIDScenarioPipeline | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/JHU_IDD-CovidSP/metadata-JHU_IDD-CovidSP.txt | ||||||||||||||||||||||||
12 | LSHTM | age-structured SEIR | These projections assume that current interventions will not change during the forecasted period. | London School of Hygiene and Tropical Medicine (LSHTM), Centre for the Mathematical Modeling of Infectious Diseases (CMMID) | https://github.com/epiforecasts/covid-us-forecasts | Methods specifically = renewal equation, using estimates of the time-varying reproductive number.See also: https://github.com/epiforecasts/covid-us-deaths and https://www.thelancet.com/journals/lanpub/article/PIIS2468-2667%2820%2930073-6/fulltext and https://github.com/epiforecasts/covid-us-forecasts. For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/epiforecasts-ensemble1/metadata-epiforecasts-ensemble1.txt | ||||||||||||||||||||||||
13 | MIT | SEIR | The projections assume that current interventions will remain in place indefinitely. | MIT | https://www.covidanalytics.io/projections | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/MIT_CovidAnalytics-DELPHI/metadata-MIT_CovidAnalytics-DELPHI.txt | ||||||||||||||||||||||||
14 | MOBS | metapopulation, age-structured SLIR | The projections assume that social distancing policies in place at the date of calibration are extended for the future weeks. | Northeastern University (Laboratory for the Modeling of Biological and Socio-technical Systems) | https://covid19.gleamproject.org/ | See also: https://www.mobs-lab.org/; For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/MOBS_NEU-GLEAM_COVID/metadata-MOBS_NEU-GLEAM_COVID.txt | ||||||||||||||||||||||||
15 | NotreDame-mobility | SEIR-like | Notre Dame University | https://github.com/TAlexPerkins/covid19_NDmobility_forecasting | This is an ensemble of nine models that are identical except that they are driven by different mobility indices from Apple and Google. The model underlying each is a deterministic, SEIR-like model. For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/NotreDame-mobility/metadata-NotreDame-mobility.txt | |||||||||||||||||||||||||
16 | Navigator | SEIR | These projections assume that current interventions, will remain unchanged during the forecasted period. | Pandemic Navigator (aka Oliver Wyman) | https://pandemicnavigator.oliverwyman.com/ | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/OliverWyman-Navigator/metadata-OliverWyman-Navigator.txt | ||||||||||||||||||||||||
17 | PSI | stochastic SEIRX | These projections assume that current interventions will not change during the forecasted period. | Predictive Science Inc. | https://github.com/predsci/DRAFT | |||||||||||||||||||||||||
18 | SWC | Bayesian SEIR | These projections do not make specific assumptions about which interventions have been implemented or will remain in place. | Snyder Wilson Consulting | https://github.com/tsnyder701/terminus | |||||||||||||||||||||||||
19 | ERDC | SEIR mechanistic | These projections assume that current interventions will not change during the forecasted period. | US Army Engineer Research and Development Center | https://github.com/erdc-cv19/covid19-forecast-hub | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/USACE-ERDC_SEIR/metadata-USACE-ERDC_SEIR.txt | ||||||||||||||||||||||||
20 | UA-EpiCovDA | SIR mechanistic with data assimilation | This model assumes that current interventions will remain in effect for at least four weeks after the forecasts are made. | University of Arizona | https://jocelinelega.github.io/EpiGro/ | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/UA-EpiCovDA/metadata-UA-EpiCovDA.txt | ||||||||||||||||||||||||
21 | SuEIR | modified SEIR | These projections assume that current interventions will not change during the forecasted period. | UCLA | https://covid19.uclaml.org/ | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/UCLA-SuEIR/metadata-UCLA-SuEIR.txt | ||||||||||||||||||||||||
22 | UMASS-MB | Bayesian SEIRD | These projections do not make specific assumptions about which interventions have been implemented or will remain in place. | University of Massachusetts, Amherst | https://reichlab.io/ | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/UMass-MechBayes/metadata-UMass-MechBayes.txt | ||||||||||||||||||||||||
23 | ParamSearch | SEIS mechanistic | The model accounts for individual state-by-state re-openings and their impact on infections and deaths. | Youyang Gu (YYG) | https://covid19-projections.com/about/ | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/YYG-ParamSearch/metadata-YYG-ParamSearch.txt | ||||||||||||||||||||||||
24 | UT | SEIR and curve-fitting | This model estimates the extent of social distancing using geolocation data from mobile phones and assumes that the extent of social distancing will not change during the period of forecasting. The model is designed to predict confirmed COVID-19 deaths resulting from only a single wave of transmission. | Univeristy of Austin COVID-19 Consortium | https://covid-19.tacc.utexas.edu/projections/ | More specificially nonlinear Bayesian hierarchical regression with a negative-binomial model for daily variation in death rates. For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/UT-Mobility/metadata-UT-Mobility.txt | ||||||||||||||||||||||||
25 | ISUandPKU | Extended varying coefficient SEIR | Collaborative team of Iowa State and Peking University | https://yumouqiu.shinyapps.io/covid-predict/ | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/ISUandPKU-vSEIdR/metadata-ISUandPKU-vSEIdR.txt | |||||||||||||||||||||||||
26 | TerminusCM | mechanistic compartmental | Snyder Wilson Consulting | https://github.com/reichlab/covid19-forecast-hub/tree/master/data-processed/SWC-TerminusCM | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/SWC-TerminusCM/metadata-SWC-TerminusCM.txt | |||||||||||||||||||||||||
27 | DRAFT | SEIRX | Predictive Science Inc | https://github.com/reichlab/covid19-forecast-hub/tree/master/data-processed/PSI-DRAFT | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/PSI-DRAFT/metadata-PSI-DRAFT.txt | |||||||||||||||||||||||||
28 | CovidIL | age-structured SEIR | University of Chicago | https://github.com/cobeylab/covid_IL | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/UChicago-CovidIL/metadata-UChicago-CovidIL.txt | |||||||||||||||||||||||||
29 | CHIME | modified SIR | Penn Medicine (Predictive Healthcare) | https://penn-chime.phl.io/ | See also: https://github.com/pennsignals/chime_sims | |||||||||||||||||||||||||
30 | COVID-19 Scenarios | SIR | See: https://covid19-scenarios.org/about | University of Basel | https://covid19-scenarios.org/ | See also: https://github.com/neherlab/covid19_scenarios | ||||||||||||||||||||||||
31 | GT-DeepCOVID | Deep learning | This model assumes that the effects of interventions are reflected in the observed data and will continue going forward. | Georgia Institute of Technology, College of Computing | https://www.cc.gatech.edu/~badityap/covid.html | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/GT-DeepCOVID/metadata-GT-DeepCOVID.txt | ||||||||||||||||||||||||
32 | IHME | combination of a mechanistic disease transmission model and a curve-fitting approach | Projections are adjusted to reflect differences in aggregate population mobility and community mitigation policies. | Institute of Health Metrics and Evaluation | https://covid19.healthdata.org/united-states-of-america | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/IHME-CurveFit/metadata-IHME-CurveFit.txt | ||||||||||||||||||||||||
33 | STEM | nonparametric spatiotemporal | The projections assume that the data used is reliable, the future will continue to follow the current pattern, and current interventions will remain the same till the end of forecasting period. | Iowa State - Lily Wang's Research Group | https://covid19.stat.iastate.edu | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/IowaStateLW-STEM/metadata-IowaStateLW-STEM.txt | ||||||||||||||||||||||||
34 | GrowthRate | statistical dynamical growth model accounting for population susceptibility | This model assumes that currently implemented interventions and corresponding reductions in transmission will continue, resulting in an overall decrease in the growth rate of COVID-19 deaths. | Los Alamos National Labs | https://covid-19.bsvgateway.org/ | For more on methods and inputs see: https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/LANL-GrowthRate/metadata-LANL-GrowthRate.txt | ||||||||||||||||||||||||
35 | Geneva | exponential and linear statistical models fit to the recent growth rate of cumulative deaths | The projections assume that social distancing policies in place at the date of calibration are extended for the future weeks. | University of Geneva / Swiss Data Science Center | https://renkulab.shinyapps.io/COVID-19-Epidemic-Forecasting/ | Nation one-week ahead forecasts only | ||||||||||||||||||||||||
36 | ||||||||||||||||||||||||||||||
37 | ||||||||||||||||||||||||||||||
38 | ||||||||||||||||||||||||||||||
39 | ||||||||||||||||||||||||||||||
40 | ||||||||||||||||||||||||||||||
41 | ||||||||||||||||||||||||||||||
42 | ||||||||||||||||||||||||||||||
43 | ||||||||||||||||||||||||||||||
44 | ||||||||||||||||||||||||||||||
45 | ||||||||||||||||||||||||||||||
46 | ||||||||||||||||||||||||||||||
47 | ||||||||||||||||||||||||||||||
48 | ||||||||||||||||||||||||||||||
49 | ||||||||||||||||||||||||||||||
50 | ||||||||||||||||||||||||||||||
51 | ||||||||||||||||||||||||||||||
52 | ||||||||||||||||||||||||||||||
53 | ||||||||||||||||||||||||||||||
54 | ||||||||||||||||||||||||||||||
55 | ||||||||||||||||||||||||||||||
56 | ||||||||||||||||||||||||||||||
57 | ||||||||||||||||||||||||||||||
58 | ||||||||||||||||||||||||||||||
59 | ||||||||||||||||||||||||||||||
60 | ||||||||||||||||||||||||||||||
61 | ||||||||||||||||||||||||||||||
62 | ||||||||||||||||||||||||||||||
63 | ||||||||||||||||||||||||||||||
64 | ||||||||||||||||||||||||||||||
65 | ||||||||||||||||||||||||||||||
66 | ||||||||||||||||||||||||||||||
67 | ||||||||||||||||||||||||||||||
68 | ||||||||||||||||||||||||||||||
69 | ||||||||||||||||||||||||||||||
70 | ||||||||||||||||||||||||||||||
71 | ||||||||||||||||||||||||||||||
72 | ||||||||||||||||||||||||||||||
73 | ||||||||||||||||||||||||||||||
74 | ||||||||||||||||||||||||||||||
75 | ||||||||||||||||||||||||||||||
76 | ||||||||||||||||||||||||||||||
77 | ||||||||||||||||||||||||||||||
78 | ||||||||||||||||||||||||||||||
79 | ||||||||||||||||||||||||||||||
80 | ||||||||||||||||||||||||||||||
81 | ||||||||||||||||||||||||||||||
82 | ||||||||||||||||||||||||||||||
83 | ||||||||||||||||||||||||||||||
84 | ||||||||||||||||||||||||||||||
85 | ||||||||||||||||||||||||||||||
86 | ||||||||||||||||||||||||||||||
87 | ||||||||||||||||||||||||||||||
88 | ||||||||||||||||||||||||||||||
89 | ||||||||||||||||||||||||||||||
90 | ||||||||||||||||||||||||||||||
91 | ||||||||||||||||||||||||||||||
92 | ||||||||||||||||||||||||||||||
93 | ||||||||||||||||||||||||||||||
94 | ||||||||||||||||||||||||||||||
95 | ||||||||||||||||||||||||||||||
96 | ||||||||||||||||||||||||||||||
97 | ||||||||||||||||||||||||||||||
98 | ||||||||||||||||||||||||||||||
99 | ||||||||||||||||||||||||||||||
100 |