ABCDEFGHIJKLMNOPQRSTUVWXYZ
1
2
How to become data scientist, data analyst, data engineer
3
Summarization of useful materials and online courses which I've taken.
4
5
CategoryOnline coursePlatformAuthorLink
6
Data analyticsApplying Data Analytics in MarketingCourseraThe University of IllinoisLink
7
Business IntelligenceData Visualization and Communication with TableauCourseraDuke universityLink
8
DatabaseDatabases and SQL for Data Science with PythonCourseraIBMLink
9
DatabaseManaging Big Data with MySQLCourseraDuke universityLink
10
Machine learningMachine learning (Version year 2011) Stanford MoocProf. Andrew NgLink
11
Machine learning Machine learning (Version year 2018) Stanford course CS229Prof. Andrew NgLink
12
Deep learningFastai Deep Learning FastaiProf. Jeremy HowardLink
13
Machine learningMachine learningCoursera
Prof. Andrew Ng at Stanford
Link
14
Deep learningNeural Networks and Deep LearningCourseraProf. Andrew NgLink
15
Deep learningImproving Deep Neural Networks: Hyperparameter Tuning, Regularization and OptimizationCourseraProf. Andrew NgLink
16
Deep learningStructuring Machine Learning ProjectsCourseraProf. Andrew NgLink
17
Deep learningConvolutional Neural NetworksCourseraProf. Andrew NgLink
18
Deep learningSequence ModelsCourseraProf. Andrew NgLink
19
Deep learningFast.ai Code-First Intro to Natural Language ProcessingFastai Prof. Rachel Thomas Link
20
MathComputational Linear Algebra Fastai Prof. Rachel Thomas Link
21
Python100 Days of Code: The Complete Python Pro Bootcamp for 2022UdemyDr. Angela Yu Link
22
Web developmentThe Complete 2022 Web Development BootcampUdemyDr. Angela Yu Link
23
Business IntelligenceMicrosoft Power BI Desktop for Business IntelligenceUdemyChris DuttonLink
24
PythonAdvanced Python Programming: Build 10 OOP ApplicationsUdemyArdit SulceLink
25
Data engineeringAnalytics Engineering BootcampUdemyRahul PrasadLink
26
Data engineeringData Engineering Zoomcamp (starts Monday, 16 January 2023)Community, free
DataTalksClub, Alexey Grigorev
Link
27
28
29
Useful websites/material related to data science
DescriptionLink
30
KaggleCompetition, tutorial Link
31
MySQL Notes for ProfessionalsBook in pdf to downloadLink
32
MongoDB Notes for Professionals bookBook in pdf to downloadLink
33
34
35
Skills reference:
36
Skill AreaName
37
Mathematics:Calculus, statistics, linear algebra
38
Programming languages: Python, R
39
BI:Tableau, Power BI
40
Machine learning: scikit-Learn, Pytorch, Fastai, TensorFlow   
41
Database: SQL, MongoDB, MySQL
42
Cloud:Google Cloud, AWS, Azure
43
Other tools: Git, Docker, Hadoop, dbt, Airflow, Jira
44
(optional)Web development: Fastapi, HTML, CSS, Javascript, node.js,
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100