ABCDEFGHIJKLMNOPQRSTUVWXY
1
2
Knowledge Graph Systems
3
Knowledge vault: a web-scale approach to probabilistic knowledge fusion
Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua Sun, Wei Zhang
https://www.cs.ubc.ca/~murphyk/Papers/kv-kdd14.pdf
4
DBPedia: A Nucleus for a web of open dataAuer, Bizer, Kobilarov, Lehmann, Cyganiak, Ives
https://www.cis.upenn.edu/~zives/research/dbpedia.pdf
5
DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia
Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, Christian Bizer
http://svn.aksw.org/papers/2013/SWJ_DBpedia/public.pdf
6
Wikidata: A Free Collaborative Knowledge BaseDenny Vrandečić and Markus Krötzsch
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42240.pdf
7
YAGO2: A Spatially and Temporally Enhanced Knowledge Base from Wikipedia: Extended Abstract
Johannes Hoffart Fabian M. Suchanek Klaus Berberich Gerhard Weikum
http://www.hoffart.ai/wp-content/papercite-data/pdf/hoffart-2013ww.pdf
8
WebTables retrospectiveCafarella, Halevy, Lee, Madhavan, Yu, Wang, Wu
https://web.eecs.umich.edu/~michjc/papers/p2140-cafarella.pdf
9
Things, not Strings (Closest thing to Google Knowledge Graph desc)Amit Singhal
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
10
Satori tutorial (Closest document for Microsoft's KG)Gao, Liang, Han, Yakout, Mohamed
https://kdd2018tutorialt39.azurewebsites.net/KDD%20Tutorial%20T39.pdf
11
Never-Ending LearningMitchell et al
http://www.cs.cmu.edu/~tom/pubs/NELL_aaai15.pdf
12
13
Extraction and Data Quality
14
Latent Relation Representations for Universal SchemasSebastian Riedel, Limin Yao, Andrew McCallumhttps://arxiv.org/pdf/1301.4293.pdf
15
Relation Extraction with Matrix Factorization and Universal SchemasSebastian Riedel, Limin Yao, Andrew McCallum, Benjamin M. Marlinhttps://www.aclweb.org/anthology/N13-1008.pdf
16
Extracting Databases from Dark Data with DeepDiveZhang, Shin, Re, Cafarella, Niu
https://cs.stanford.edu/people/chrismre/papers/modiv923-zhangA.pdf
17
Extending Cross-Domain Knowledge Bases with Long Tail Entities using Web Table DataOulabi, Bizer
https://pdfs.semanticscholar.org/ee3d/6bbfa5fef9d809101692469ee0df9487f7a9.pdf
18
Overview of the English Slot Filling Track at the TAC2014 Knowledge Base Population EvaluationMihai Surdeanu, Heng Jihttp://nlp.cs.rpi.edu/paper/sf2014overview.pdf
19
20
Applications
21
Leveraging Knowledge Bases in LSTMs for Improving Machine ReadingBishan Yang, Tom Mitchell
https://www.cs.cmu.edu/~bishan/papers/kblstm_acl2017.pdf
22
Sirius: An Open End-to-End Voice and Vision Personal Assistant and Its Implications for Future Warehouse Scale Computers
Hauswald et al
http://sirius.clarity-lab.org/wp-content/papercite-data/pdf/hauswald15asplos.pdf
https://dl.acm.org/doi/10.1145/2775054.2694347
https://web.eecs.umich.edu/~yunqi/pdf/hauswald2015sirius.pdf
23
Key-Value Memory Networks for Directly Reading Documents
Alexander H. Miller1 Adam Fisch1 Jesse Dodge1,2 Amir-Hossein Karimi1 Antoine Bordes1 Jason Weston1
https://arxiv.org/pdf/1606.03126.pdf
24
Poincaré Embeddings for Learning Hierarchical RepresentationsMaximilian Nickel, Douwe Kielahttps://arxiv.org/pdf/1705.08039.pdf
25
Embedding Logical Queries on Knowledge GraphsWilliam L. Hamilton Payal Bajaj Marinka Zitnik Dan Jurafsky† Jure Leskovechttps://arxiv.org/pdf/1806.01445.pdf
26
Sirius: An Open End-to-End Voice and Vision Personal Assistant and Its Implications for Future Warehouse Scale Computers
27
Google Dataset Search: Building a search engine for datasets in an open Web ecosystemNatasha Noy, Matthew Burgess, Dan Brickleyhttps://research.google/pubs/pub47845/
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100