A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | AA | AB | AC | AD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Date | Presenter | Topic | Paper in zotero? | Slides added to shared folder? | Paper (full citation) | Link | |||||||||||||||||||||||
2 | 2025-10-03 | Mike | Presenter's choice | Yes | Yes | Iwohn et al. Ultra-High-Throughput Nanoliter-Scale Liquid-Liquid Extractions and Reaction Mixture Purification. Advanced Materials Interfaces. 2025. DOI: 10.1002/admi.202500465 | https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202500465 | |||||||||||||||||||||||
3 | 2025-10-03 | Weiting | Presenter's choice | Photocatalyzed 18F-Fluorination: A Streamlined Radiolabeling Approach for Rapid Adoption and Automation,Yueqi Wang, Lili Pan, Kai Lu, Mingxing Hu, Cheng Zheng, Mufeng Li, Yang Xie, Cheng Yang, Hongbao Sun, Xiaoai Wu, Haoxing Wu, and Wei Chen,Organic Letters 2025 27 (26), 7224-7229,DOI: 10.1021/acs.orglett.5c02193 | https://pubs.acs.org/doi/full/10.1021/acs.orglett.5c02193 | |||||||||||||||||||||||||
4 | 2025-09-19 | Rajib | Presenter's choice | Yes | Zhou, D., Chu, W., Xu, J. et al. [18F]Tosyl fluoride as a versatile [18F]fluoride source for the preparation of 18F-labeled radiopharmaceuticals. Sci Rep 13, 3182 (2023). https://doi.org/10.1038/s41598-023-30200-2 | https://www.nature.com/articles/s41598-023-30200-2 | ||||||||||||||||||||||||
5 | 2025-09-05 | Thilina | Presenter's choice | Yes | Kevin Angers, Kourosh Darvish, Naruki Yoshikawa, Sargol Okhovatian, Dawn Bannerman, Ilya Yakavets, Florian Shkurti, Alán Aspuru-Guzik, Milica Radisic, "RoboCulture: A Robotics Platform for Automated Biological Experimentation", https://doi.org/10.48550/arXiv.2505.14941 . | https://doi.org/10.48550/arXiv.2505.14941 | ||||||||||||||||||||||||
6 | 2025-06-06 | Thilina | Presenter's choice | Yes | Salley, D., Manzano, J. S., Kitson, P. J., & Cronin, L. (2023). Robotic modules for the programmable chemputation of molecules and materials. ACS Central Science, 9(8), 1525-1537. | https://pubs.acs.org/doi/full/10.1021/acscentsci.3c00304 | ||||||||||||||||||||||||
7 | 2025-06-06 | Rajib | Presenter's choice | Yes | Dingyao Gao,‡ab Yinxing Miao,‡b Siqin Ye,‡b Chunmei Lu,ab Gaochao Lv,b Ke Li,b Chunjing Yu,*c Jianguo Lin *b and Ling Qiu*ab . 18738 | RSC Adv., 2021, 11, 18738–18747 | https://pubs.rsc.org/en/content/articlelanding/2021/ra/d1ra01324f | ||||||||||||||||||||||||
8 | 2025-03-07 | Colin | Dielectric Laser Acceleration | No | Peralta, E., Soong, K., England, R. et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 503, 91–94 (2013). https://doi.org/10.1038/nature12664 | https://www.nature.com/articles/nature12664#citeas | ||||||||||||||||||||||||
9 | 2025-01-31 | Weiting | Presenter's choice | Yes | Probing the chemical ‘reactome’ with high-throughput experimentation data | https://www.nature.com/articles/s41557-023-01393-w#peer-review | ||||||||||||||||||||||||
10 | 2025-01-31 | Mike | N/A | Yes | Yes | Lahdenpohja et al. Production of [18F]DPA-714, [18F]fallypride and [18F]LBT-999 using iMiDEV, a fully automated microfluidic platform: towards clinical radiopharmaceutical production. EJNMMI RPC 9(1): 86, 2024 | https://ejnmmipharmchem.springeropen.com/articles/10.1186/s41181-024-00315-6 | |||||||||||||||||||||||
11 | 2025-01-17 | Thilina | Presenter's choice | Yes | Dai, T., Vijayakrishnan, S., Szczypiński, F.T. et al. Autonomous mobile robots for exploratory synthetic chemistry. Nature 635, 890–897 (2024). https://doi.org/10.1038/s41586-024-08173-7 | https://doi.org/10.1038/s41586-024-08173-7 | ||||||||||||||||||||||||
12 | 2025-01-03 | Rajib | presenter's choice | Jay S. Wright, Richard Ma, E. William Webb, Wade P. Winton, Jenelle Stauff, Kevin Cheng, Allen F. Brooks, Melanie S. Sanford, Peter J. H. Scott. Angew. Chem. Int. Ed. 2024, 63, e202316365. | https://doi.org/10.1002/anie.202316365 | |||||||||||||||||||||||||
13 | 2025-01-02 | Masoud | presenter's choice | Allen F. Brooks, Melanie S. Sanford,* and Peter J. H. Scott* | https://www.nature.com/articles/s41598-021-04626-5#article-info | |||||||||||||||||||||||||
14 | 2024-12-06 | Alex | presenter's choice | Yes | Pleiko, K.; Haugas, M.; Parfejevs, V.; Pantelejevs, T.; Parisini, E.; Teesalu, T.; Riekstina, U. Targeting Triple-Negative Breast Cancer Cells with a Β1-Integrin Binding Aptamer. Molecular Therapy Nucleic Acids 2023, 33, 871–884. https://doi.org/10.1016/j.omtn.2023.08.015. | https://www.cell.com/molecular-therapy-family/nucleic-acids/fulltext/S2162-2531(23)00226-3 | ||||||||||||||||||||||||
15 | 2024-11-01 | Colin | presenter's choice | Yes | https://www.nature.com/articles/s41467-020-17230-4 | |||||||||||||||||||||||||
16 | 2024-10-04 | Rajib | presenter's choice | Yes | Strategies for designing novel positron emission tomography (PET) radiotracers to cross the blood–brain barrier | https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/full/10.1002/jlcr.4019 | ||||||||||||||||||||||||
17 | 2024-09-20 | Joanne | presenter's choice | Yes | EANM guideline for harmonisation on molar activity or specific activity of radiopharmaceuticals: impact on safety and imaging quality | https://link.springer.com/article/10.1186/s41181-021-00149-6 | ||||||||||||||||||||||||
18 | 2024-08-23 | Alex | presenter's choice | [68Ga]Ga-Schizokinen, a Potential Radiotracer for Selective Bacterial Infection Imaging (2024) | https://pubs.acs.org/doi/10.1021/acsinfecdis.4c00067 | |||||||||||||||||||||||||
19 | 2024-08-23 | Colin | presenter's choice | Yes | Patra, S., Chakravarty, R., Singh, K., Vimalnath, K. V., & Chakraborty, S. (2023). Electrochemical separation and purification of no-carrier-added 177Lu for radiopharmaceutical preparation: Translation from bench to bed. Chemical Engineering Journal Advances, 14(100444), 100444. doi:10.1016/j.ceja.2023.100444 | https://doi.org/10.1016/j.ceja.2023.100444 | ||||||||||||||||||||||||
20 | 2024-08-09 | Weiting | presenter's choice | |||||||||||||||||||||||||||
21 | 2024-08-09 | Rajib | presenter's choice | |||||||||||||||||||||||||||
22 | 2024-07-26 | Mike | 2024 SNMMI selected abstracts | Yes | ||||||||||||||||||||||||||
23 | 2024-06-21 2024-07-12 | Joanne | 2024 SNMMI selected abstracts | |||||||||||||||||||||||||||
24 | 2024-06-21 | Alex | Alex, please add your paper | |||||||||||||||||||||||||||
25 | 2024-05-24 | Weiting | presenter's choice | Bowden, G. D., Scott, P. J. H. & Boros, E. Radiochemistry: A Hot Field with Opportunities for Cool Chemistry. ACS Cent. Sci. 9, 2183–2195 (2023). | https://pubs.acs.org/doi/10.1021/acscentsci.3c01050 | |||||||||||||||||||||||||
26 | 2024-05-10 | Joanne | presenter's choice | Yes | Improved purification of cyclotron [68Ga]GaCl3 for the production of 68Ga radiopharmaceuticals | https://www.sciencedirect.com/science/article/pii/S0969805124000180 | ||||||||||||||||||||||||
27 | 2024-03-22 | Alex | presenter's choice | |||||||||||||||||||||||||||
28 | 2024-03-22 | Joanne | presenter's choice | Yes | A comparison of [18F]AlF‑ and 68Ga‑labeled dual targeting heterodimer FAPI‑RGD in malignant tumor: preclinical evaluation and pilot clinical PET/CT imaging | https://link.springer.com/article/10.1007/s00259-023-06587-5 | ||||||||||||||||||||||||
29 | 2023-05-15 | Ryan | presenter's choice | Yes | Chen, Zhengkun, et al. "Trends in droplet microfluidics: from droplet generation to biomedical applications." Langmuir 38.20 (2022): 6233-6248. | https://pubs.acs.org/doi/full/10.1021/acs.langmuir.2c00491?casa_token=RUqC7efPIuIAAAAA%3A27JMFkHXGokwfjZWRTxw9r3brmNrsA_GY8teUi0uhT2bZq5b04JapCjfr6K6y6PD29ZZXwxFjWYawUo | ||||||||||||||||||||||||
30 | 2022-11-18 | Ryan | presenter's choice | Schaal, Jeffrey L., et al. "Brachytherapy via a depot of biopolymer-bound 131I synergizes with nanoparticle paclitaxel in therapy-resistant pancreatic tumours." Nature Biomedical Engineering 6.10 (2022): 1148-1166. | https://www.nature.com/articles/s41551-022-00949-4 | |||||||||||||||||||||||||
31 | 2022-10-21 | Joanne | presenter's choice | Pratt E C, Skubal M, Mc Larney B, et al. Prospective testing of clinical Cerenkov luminescence imaging against standard-of-care nuclear imaging for tumour location[J]. Nature Biomedical Engineering, 2022, 6(5): 559-568. | https://www.nature.com/articles/s41551-022-00876-4 | |||||||||||||||||||||||||
32 | 2022-08-26 | Ryan | Targeted radionuclide therapy | Yes | Yes | Jahn, Ulrika, et al. "Peptide receptor radionuclide therapy (PRRT) with 177Lu-DOTATATE; differences in tumor dosimetry, vascularity and lesion metrics in pancreatic and small intestinal neuroendocrine neoplasms." Cancers 13.5 (2021): 962. | https://www.mdpi.com/2072-6694/13/5/962 | |||||||||||||||||||||||
33 | 2022-08-05 | Travis | Targeted radionuclide therapy | Yes | Yes | Borgna, F.; Barritt, P.; Grundler, P. V.; Talip, Z.; Cohrs, S.; Zeevaart, J. R.; Köster, U.; Schibli, R.; van der Meulen, N. P.; Müller, C. Simultaneous Visualization of 161Tb- and 177Lu-Labeled Somatostatin Analogues Using Dual-Isotope SPECT Imaging. Pharmaceutics 2021, 13 (4), 536. https://doi.org/10.3390/pharmaceutics13040536. | https://www.mdpi.com/1999-4923/13/4/536/htm | |||||||||||||||||||||||
34 | 2022-07-29 | Joanne | Targeted radionuclide therapy | Yes | Korsen J A, Gutierrez J A, Tully K M, et al. Delta-like ligand 3–targeted radioimmunotherapy for neuroendocrine prostate cancer[J]. Proceedings of the National Academy of Sciences, 2022, 119(27): e2203820119. | https://www.pnas.org/doi/abs/10.1073/pnas.2203820119 | ||||||||||||||||||||||||
35 | 2022-07-01 | Mike | PET tracer metabolism | Yes | Yes | Dendl et al. "FAP and FAPI-PET/CT in malignant and non-alignant diseases: a perfect symbiosis?" Cancers 13: 4946 (2021) | https://www.mdpi.com/2072-6694/13/19/4946 | |||||||||||||||||||||||
36 | 2022-05-20 | Ryan | PET tracer metabolism | Yes | Yes | Harada, Ryuichi, et al. "18F-SMBT-1: a selective and reversible PET tracer for monoamine oxidase-B imaging." Journal of Nuclear Medicine 62.2 (2021): 253-258. | https://jnm.snmjournals.org/content/62/2/253.abstract | |||||||||||||||||||||||
37 | 2022-05-13 | Ksenia | PET tracer metabolism | Chen, M., Chen, Z., Castillo, J.B. et al. [18F]-C-SNAT4: an improved caspase-3-sensitive nanoaggregation PET tracer for imaging of tumor responses to chemo- and immunotherapies. Eur J Nucl Med Mol Imaging 48, 3386–3399 (2021). https://doi.org/10.1007/s00259-021-05297-0 | https://link.springer.com/article/10.1007/s00259-021-05297-0 | |||||||||||||||||||||||||
38 | 2022-05-06 | Joanne | PET tracer metabolism | Yes | Sun H, Sloan A, Mangner T J, et al. Imaging DNA synthesis with [18F] FMAU and positron emission tomography in patients with cancer[J]. European journal of nuclear medicine and molecular imaging, 2005, 32(1): 15-22. | https://link.springer.com/article/10.1007/s00259-004-1713-8 | ||||||||||||||||||||||||
39 | 2022-04-22 | Alex | Environment-Related | |||||||||||||||||||||||||||
40 | 2022-04-22 | Mike | Environment-Related | Yes | Yes | Im et al. PET tracing of biodistribution for orally administered 64Cu-labeled polystyrene in mice. JNM 2021: 10.2967/jnumed.120.256982 | https://jnm.snmjournals.org/content/early/2021/07/08/jnumed.120.256982 | |||||||||||||||||||||||
41 | 2022-02-11 | Viviann | Environment-Related | Cuthbert, M.O., Rau, G.C., Ekström, M. et al. Global climate-driven trade-offs between the water retention and cooling benefits of urban greening. Nat Commun 13, 518 (2022). https://doi.org/10.1038/s41467-022-28160-8 | https://doi.org/10.1038/s41467-022-28160-8 | |||||||||||||||||||||||||
42 | 2022-01-27 | Ksenia | Environment-Related | Chen L, Yuan H, Chen S, Zheng C, Wu X, Li Z, Liang C, Dai P, Wang Q, Ma X, Yan X. Cost-Effective, High-Yield Production of Biotemplated Catalytic Tubular Micromotors as Self-Propelled Microcleaners for Water Treatment. ACS Appl Mater Interfaces. 2021 Jul 7;13(26):31226-31235. doi: 10.1021/acsami.1c03595. Epub 2021 Jun 27. PMID: 34176260. | https://pubs.acs.org/doi/10.1021/acsami.1c03595 | |||||||||||||||||||||||||
43 | 2022-01-27 | Travis | Environment-Related | Yes | Yes | Levitskaia, T. G.; Chatterjee, S.; Pence, N. K.; Romero, J.; Varga, T.; Engelhard, M. H.; Du, Y.; Kovarik, L.; Arey, B. W.; Bowden, M. E.; Walter, E. D. Inorganic Tin Aluminophosphate Nanocomposite for Reductive Separation of Pertechnetate. Environ. Sci.: Nano 2016, 3 (5), 1003–1013. https://doi.org/10.1039/C6EN00130K. | https://pubs.rsc.org/en/content/articlelanding/2016/en/c6en00130k | |||||||||||||||||||||||
44 | 2021-12-03 | Jason | Environment-Related | Yes | In Progress | Stewart, M.N., Hockley, B.G. and Scott, P.J., 2015. Green approaches to late-stage fluorination: radiosyntheses of 18 F-labelled radiopharmaceuticals in ethanol and water. Chemical Communications, 51(79), pp.14805-14808. | https://pubs.rsc.org/en/content/articlehtml/2015/cc/c5cc05919d | |||||||||||||||||||||||
45 | 2021-10-08 | Ryan | Microfluidic fabrication | Yes | Sanchez Noriega, Jose L., et al. "Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics." Nature Communications 12.1 (2021): 1-13. | https://www.nature.com/articles/s41467-021-25788-w | ||||||||||||||||||||||||
46 | 2021-10-01 | Ksenia | Microfluidic fabrication | Yes | Ming T, Cheng Y, Xing Y, Luo J, Mao G, Liu J, et al. Electrochemical Microfluidic Paper-Based Aptasensor Platform Based on a Biotin–Streptavidin System for Label-Free Detection of Biomarkers. ACS Appl Mater Interfaces. American Chemical Society; 2021 | https://pubs.acs.org/doi/full/10.1021/acsami.1c12716 | ||||||||||||||||||||||||
47 | Alex | Microfluidic fabrication | ||||||||||||||||||||||||||||
48 | Jason | Microfluidic fabrication | Yes | No | Kanitthamniyom, P., Zhou, A., Feng, S., Liu, A., Vasoo, S. and Zhang, Y., 2020. A 3D-printed modular magnetic digital microfluidic architecture for on-demand bioanalysis. Microsystems & Nanoengineering, 6(1), pp.1-11. | https://www.nature.com/articles/s41378-020-0152-4 | ||||||||||||||||||||||||
49 | 2021-09-03 | Viviann | Microfluidic fabrication | Abhay Andar, Md-Sadique Hasan, Venkatesh Srinivasan, Mustafa Al-Adhami, Erick Gutierrez, David Burgenson, Xudong Ge, Leah Tolosa, Yordan Kostov, and Govind Rao; Analytical Chemistry 2019 91 (17), 11004-11012 | https://doi.org/10.1021/acs.analchem.9b01232 | |||||||||||||||||||||||||
50 | 2021-08-27 | Joanne | Microfluidic fabrication | Ching, Terry, et al. "Fabrication of integrated microfluidic devices by direct ink writing (DIW) 3D printing." Sensors and Actuators B: Chemical 297 (2019): 126609. | https://doi.org/10.1016/j.snb.2019.05.086 | |||||||||||||||||||||||||
51 | 2021-08-27 | Mike | Microfluidic fabrication | Yes | Yes | Guler et al. CO2 laser machining for microfluidics mold fabrication from PMMA with applications on viscoelastic focusing, electrospun nanofiber production, and droplet generation, J. ndustrial and Engineering Chemistry: 90: 340-349, 2021 | https://www.sciencedirect.com/science/article/pii/S1226086X21001568 | |||||||||||||||||||||||
52 | 2021-08-20 | Alejandra | Microfluidic fabrication | Yes | Yes | Lai, X.; Lu, B.; Zhang, P.; Zhang, X.; Pu, Z.; Yu, H.; Li, D. " Sticker microfluidics: A method for fabrication of cosomized monolithic microfluidics" ACS Biomater. Sci. Eng. 5, 6801-6810 (2019) | https://pubs.acs.org/doi/10.1021/acsbiomaterials.9b00953 | |||||||||||||||||||||||
53 | ||||||||||||||||||||||||||||||
54 | 2021-06-24 | Travis | Lab relevant | Yes | Yes | Roivainen, A. et al. Biodistribution and Blood Metabolism of 1-11C-Methyl-4-Piperidinyl n-Butyrate in Humans: An Imaging Agent for In Vivo Assessment of Butyrylcholinesterase Activity with PET. Journal of Nuclear Medicine 45, 2032–2039 (2004). | https://jnm.snmjournals.org/content/45/12/2032 | |||||||||||||||||||||||
55 | Lab relevant | |||||||||||||||||||||||||||||
56 | Lab relevant | |||||||||||||||||||||||||||||
57 | Lab relevant | |||||||||||||||||||||||||||||
58 | 2021-06-11 | Alejandra | Lab relevant | Mahmoodi, Z. et al. " A simple coating method of PDMS microchip with PTFE for synthesis of dexamethasone-encapsulated PLGA nanoparticles" Drug Delivery and Translational Research. 9, 707-720 (2019) | https://link.springer.com/article/10.1007%2Fs13346-019-00636-z | |||||||||||||||||||||||||
59 | 2021-06-04 | Joanne | Lab relevant | Neves  C B, Hrynchak I, Fonseca I, et al. Advances in the automated synthesis of 6-[18 F] Fluoro-L-DOPA[J]. EJNMMI radiopharmacy and chemistry, 2021, 6(1): 1-19. | https://link.springer.com/article/10.1186/s41181-021-00126-z | |||||||||||||||||||||||||
60 | 2021-05-07 | Mike | Lab relevant | Yes | Ovdiichuk et al. Implementation of iMiDEV, a new fully automated microfluidic platform for radiopharmaceutical production. Lab Chip 2021. DOI: 10.1039/D1LC00148E | https://pubs.rsc.org/en/content/articlelanding/2021/lc/d1lc00148e#!divAbstract | ||||||||||||||||||||||||
61 | 2021-04-23 | Viviann | Lab relevant | |||||||||||||||||||||||||||
62 | 2021-04-23 | Jason | Lab relevant | Brandon, A.M., Gao, S.H., Tian, R., Ning, D., Yang, S.S., Zhou, J., Wu, W.M. and Criddle, C.S., 2018. Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome. Environmental science & technology, 52(11), pp.6526-6533. | https://pubs.acs.org/doi/abs/10.1021/acs.est.8b02301 | |||||||||||||||||||||||||
63 | 2021-04-02 | Travis | Lab relevant | |||||||||||||||||||||||||||
64 | 2021-03-19 | Ksenia | Lab relevant | Chen K, Jiang E, Wei X, Xia Y, Wu Z, Gong Z, et al. The acoustic droplet printing of functional tumor microenvironments. Lab Chip. The Royal Society of Chemistry; 2021 | https://pubs.rsc.org/en/content/articlelanding/2021/lc/d1lc00003a#!divAbstract | |||||||||||||||||||||||||
65 | 2021-03-19 | Alejandra | Lab relevant | Earley, D. E.; Guillou, A.; vander Born, D.; Poot, A. J.; Holland, J. P. " Microfluidic preparation of 89Zr-radiolabelled proteins by flow photochemistry" Molecules. 26(3) 764 (2021) | https://www.mdpi.com/1420-3049/26/3/764 | |||||||||||||||||||||||||
66 | 2021-03-12 | Viviann | Lab relevant | Scholz, V., Meckenstock, R.U., Nielsen, L.P. et al. Cable bacteria reduce methane emissions from rice-vegetated soils. Nat Commun 11, 1878 (2020). https://doi.org/10.1038/s41467-020-15812-w | https://www.nature.com/articles/s41467-020-15812-w.pdf | |||||||||||||||||||||||||
67 | 2021-03-12 | Mike | Lab relevant | Yes | Jiang et al. Super-hydrophilic track for rapid directional transport of water droplets on the superhydrophobic surface. Microfluid Nanofluid 24: 89, 2020 | https://link.springer.com/article/10.1007/s10404-020-02393-9 | ||||||||||||||||||||||||
68 | 2021-02-26 | Ksenia | Lab relevant | Wang X, Zeng J, Li J, Yu X, Wang Z, Zhang Y. Beetle and cactus-inspired surface endows continuous and directional droplet jumping for efficient water harvesting. Journal of Materials Chemistry A. 2021. | https://pubs.rsc.org/en/content/articlehtml/2021/ta/d0ta10123k | |||||||||||||||||||||||||
69 | 2021-02-26 | Jason | Lab relevant | Oyama, T.G., Oyama, K. and Taguchi, M., 2020. A simple method for production of hydrophilic, rigid, and sterilized multi-layer 3D integrated polydimethylsiloxane microfluidic chips. Lab on a Chip, 20(13), pp.2354-2363. | https://pubs.rsc.org/en/content/articlelanding/2020/lc/d0lc00316f#!divAbstract | |||||||||||||||||||||||||
70 | 2021-02-12 | Travis | Lab relevant | Shields, B. J. et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 590, 89–96 (2021). | https://www.nature.com/articles/s41586-021-03213-y | |||||||||||||||||||||||||
71 | 2021-02-12 | Alejandra | Lab relevant | Melanie, G.; Holland, J. P. " Synthesis and photochemical studies an gallium and indium complexes of DTPA-PEG3-ArN3 for radiolabeling antibodies" Inorganic Chemistry. 18, 12302-12310 (2019) | https://pubs.acs.org/doi/10.1021/acs.inorgchem.9b01802 | |||||||||||||||||||||||||
72 | 2021-02-05 | Viviann | Lab relevant | Shiraiwa, K., Suzuki, Y., Uchida, H. et al. Simultaneous quantification method for 5-FU, uracil, and tegafur using UPLC-MS/MS and clinical application in monitoring UFT/LV combination therapy after hepatectomy. Sci Rep 11, 3132 (2021). https://doi.org/10.1038/s41598-021-82908-8 | https://www.nature.com/articles/s41598-021-82908-8#citeas | |||||||||||||||||||||||||
73 | 2021-01-29 | Mike | Lab relevant | Yes | Torabinia et al. Electrowetting-on-dielectric (EWOD) digital microfluidic device for in-line workup in organic reactions: A critical step in the drug discovery work cycle. Sensors and Actuators B: Chemical 330: 129252, 2021 | https://www.sciencedirect.com/science/article/abs/pii/S0925400520315926?via%3Dihub | ||||||||||||||||||||||||
74 | 2021-01-22 | Jason | Lab relevant | Yuki Sato, Yuta Terasaka, Wataru Utsugi, Hiroyuki Kikuchi, Hideo Kiyooka & Tatsuo Torii (2019) Radiation imaging using a compact Compton camera mounted on a crawler robot inside reactor buildings of Fukushima Daiichi Nuclear Power Station, Journal of Nuclear Science and Technology, 56:9-10, 801-808, DOI: 10.1080/00223131.2019.1581111 | https://doi.org/10.1080/00223131.2019.1581111 | |||||||||||||||||||||||||
75 | 2020-01-22 | Travis | Lab relevant | Moein, M. M. et al. Sample preparation techniques for radiometabolite analysis of positron emission tomography radioligands; trends, progress, limitations and future prospects. TrAC Trends in Analytical Chemistry 110, 1–7 (2019). | https://www.sciencedirect.com/science/article/abs/pii/S0165993618302942 | |||||||||||||||||||||||||
76 | 2020-01-15 | Joanne | Lab relevant | Orlovskaya V, Fedorova O, Kuznetsova O, et al. Cu‐mediated radiofluorination of aryl pinacolboronate esters: alcohols as solvents with application to 6‐L‐[18F] FDOPA synthesis[J]. European Journal of Organic Chemistry, 2020, 2020(45): 7079-7086. | https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/ejoc.202001198 | |||||||||||||||||||||||||
77 | 2021-01-15 | Ksenia | Lab relevant | Barragan, J. T. C., & Kubota, L. T. (2020). Minipotentiostat controlled by smartphone on a micropipette: A versatile, portable, agile and accurate tool for electroanalysis. Electrochimica Acta, 136048. doi:10.1016/j.electacta.2020.136048 | https://www.sciencedirect.com/science/article/abs/pii/S0013468620304400 | |||||||||||||||||||||||||
78 | 2021-01-08 | Viviann | Lab relevant | Cassar, L. (1975). Synthesis of aryl- and vinyl-substituted acetylene derivatives by the use of nickel and palladium complexes || Sonagashira, K. et al. (1975). A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines | https://www.sciencedirect.com/science/article/abs/pii/S0022328X00940488 https://www.sciencedirect.com/science/article/abs/pii/S0040403900910943 | |||||||||||||||||||||||||
79 | 2021-01-08 | Alejandra | Lab relevant | Gallina, M. E.; Kin, J. T.; Shelor, M.; Vasquez, J.; Mongersun, A.; Kim, M.; Tang, S. K. Y.; Abbyad, P. Pratx G. " Toward a droplet-based single-cell radiometric assay" Analytical Chemistry, 89, 12, 6472-6481 (2017) | https://pubs.acs.org/doi/10.1021/acs.analchem.7b00414 | |||||||||||||||||||||||||
80 | 2020-12-18 | Mike | Lab relevant | Yes | Zhu et al. Transforming an academic radiochemistry facility for positron emission tomography drug cGMP compliance. Mol. Imag. Biol. 22: 256-264, 2020 | https://link.springer.com/article/10.1007/s11307-019-01395-6 | ||||||||||||||||||||||||
81 | 2020-12-18 | Travis | Lab relevant | Patel, S. S., Bochare, M. D. & Degani, M. S. Preparation and characterization of a novel silica–KF composite and facile fluorination of aromatic substrates. New J. Chem. 42, 20095–20100 (2018). | https://pubs.rsc.org/en/content/articlelanding/2018/nj/c8nj03559h#!divAbstract | |||||||||||||||||||||||||
82 | 2020-12-11 | Jason | Lab relevant | Lima, T.V., Gnesin, S., Nitzsche, E., Ortega, P.G., Müller, C. and van der Meulen, N.P., 2020. First phantom-based quantitative assessment of Scandium-44 using a commercial PET device. Frontiers in Physics, 8. | https://www.frontiersin.org/articles/10.3389/fphy.2020.00241/full | |||||||||||||||||||||||||
83 | 2020-12-11 | Joanne | Lab relevant | An F, Nurili F, Sayman H, et al. One-Step, Rapid, 18F–19F Isotopic Exchange Radiolabeling of Difluoro-dioxaborinins: Substituent Effect on Stability and In Vivo Applications[J]. Journal of Medicinal Chemistry, 2020. | https://pubs.acs.org/doi/pdf/10.1021/acs.jmedchem.0c00997 | |||||||||||||||||||||||||
84 | 2020-12-04 | Ksenia | Lab relevant | Fath, V., Kockmann, N., Otto, J. & Röder, T. Self-optimising processes and real-time-optimisation of organic syntheses in a microreactor system using Nelder–Mead and design of experiments. Reaction Chemistry & Engineering 5, 1281–1299 (2020). | https://pubs.rsc.org/--/content/articlehtml/2020/re/d0re00081g | |||||||||||||||||||||||||
85 | 2020-11-20 | Viviann | Lab relevant | Dannie J. G. P. van Osch, Carin H. J. T. Dietz, Samah E. E. Warrag, and Maaike C. Kroon. The Curious Case of Hydrophobic Deep Eutectic Solvents: A Story on the Discovery, Design, and Applications. ACS Sustainable Chemistry & Engineering 2020 8 (29), 10591-10612 DOI: 10.1021/acssuschemeng.0c00559 | https://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.0c00559 | |||||||||||||||||||||||||
86 | 2020-11-20 | Alejandra | Lab relevant | Qiao, Y.; Zhou, Y.; Xiao, T.; Zhang, Z.; Ma, L.; Su, M.; Suo, G.; "Evaluating single-cell DNA damage induced by enhanced radioation on a gold nanofilm patch" Appl. Mater. Interfaces. 9, 36525-36532 (2017) | https://pubs.acs.org/doi/10.1021/acsami.7b08460 | |||||||||||||||||||||||||
87 | 2020-11-13 | Mike | Lab relevant | Yes | Jung et al. Whole-body tracking of single cells via positron emission tomography. Nature Biomedical Engineering 4: 835-844. 2020 | https://www.nature.com/articles/s41551-020-0570-5 | ||||||||||||||||||||||||
88 | 2020-11-13 | Travis | Lab relevant | Smith-Bindman, R. et al. Trends in Use of Medical Imaging in US Health Care Systems and in Ontario, Canada, 2000-2016. JAMA 322, 843–856 (2019). | https://jamanetwork.com/journals/jama/fullarticle/2749213 | |||||||||||||||||||||||||
89 | 2020-11-06 | Jason | Lab relevant | Snider, E., Dasenbrock-Gammon, N., McBride, R., Debessai, M., Vindana, H., Vencatasamy, K., Lawler, K.V., Salamat, A. and Dias, R.P., 2020. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 586(7829), pp.373-377. | https://www.nature.com/articles/s41586-020-2801-z | |||||||||||||||||||||||||
90 | 2020-11-06 | Joanne | Lab relevant | Chen W, Huang Z, Tay N E S, et al. Direct arene C–H fluorination with 18F− via organic photoredox catalysis[J]. Science, 2019, 364(6446): 1170-1174. | https://science.sciencemag.org/content/364/6446/1170.abstract?casa_token=BhYkKRTLcC8AAAAA:lm9fYw8fnLLCvrBFJSr-7bQWz0DE4gmz0uN9Dj_R93BbMU9K4tqknwFHzLNAJgA-k95vO0GSLwmv2Q | |||||||||||||||||||||||||
91 | 2020-10-23 | Ksenia | Lab relevant | Rasmus R. Svejdal, Drago Sticker, Claus Sønderby, Jörg P. Kutter, Kasper D. Rand, Thiol-ene microfluidic chip for fast on-chip sample clean-up, separation and ESI mass spectrometry of peptides and proteins, Analytica Chimica Acta, Volume 1140, 2020, Pages 168-177, ISSN 0003-2670, https://doi.org/10.1016/j.aca.2020.09.062. | https://www.sciencedirect.com/science/article/abs/pii/S0003267020309958 | |||||||||||||||||||||||||
92 | 2020-10-09 | Jason | Lab relevant | Liu, W.W. and Zhu, Y., 2020. “Development and application of analytical detection techniques for droplet-based microfluidics”-A Review. Analytica Chimica Acta. | https://www.sciencedirect.com/science/article/pii/S0003267020303184 | |||||||||||||||||||||||||
93 | 2020-10-09 | Travis | Lab relevant | Kim, H. et al. Smartphone-based low light detection for bioluminescence application. Scientific Reports 7, 40203 (2017). | https://www.nature.com/articles/srep40203 | |||||||||||||||||||||||||
94 | 2020-10-02 | Mike | Lab relevant | Yes | Gardeau et al. Fast carbonylation reaction from CO2 using plasma gas/liquid microreactors for radiolabeling applications. React. Chem. Eng. DOI: 10.1039/D0RE00289E, 2020 | https://doi.org/10.1039/D0RE00289E | ||||||||||||||||||||||||
95 | 2020-10-02 | Joanne | Lab relevant | Hong H, Zhang L, Xie F, et al. Rapid one-step 18 F-radiolabeling of biomolecules in aqueous media by organophosphine fluoride acceptors[J]. Nature communications, 2019, 10(1): 1-7. | https://www.nature.com/articles/s41467-019-08953-0 | |||||||||||||||||||||||||
96 | 2020-09-16 | Alejandra | Lab relevant | Li, J.; Carney, R. P.; Liu, R.; Fan, J.; Zhao, S.; Chen, Y.; lam, K. S.; Pan, T. "Microfluidic Print-to-Synthesis Platform for Efficient Preparation and Screening of Combinatorial Peptide Microarrays" Analytical Chemistry 90, 5833-5840 (2018). | https://pubs.acs.org/doi/10.1021/acs.analchem.8b00371 | |||||||||||||||||||||||||
97 | 2020-09-16 | Ksenia | Lab relevant | Harzheim, A., Könemann, F., Gotsmann, B., van der Zant, H., Gehring, P., Single‐Material Graphene Thermocouples. Adv. Funct. Mater. 2020, 30, 2000574. https://doi.org/10.1002/adfm.202000574 | https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202000574 | |||||||||||||||||||||||||
98 | 2020-09-09 | Travis | Lab relevant | Holland‐Moritz, D. A. et al. Mass Activated Droplet Sorting (MADS) Enables High-Throughput Screening of Enzymatic Reactions at Nanoliter Scale. Angewandte Chemie 132, 4500–4507 (2020). | https://onlinelibrary.wiley.com/doi/abs/10.1002/ange.201913203 | |||||||||||||||||||||||||
99 | 2020-09-09 | Jason | Lab relevant | Nie, M. and Takeuchi, S., 2020. Luer-lock valve: A pre-fabricated pneumatic valve for 3D printed microfluidic automation. Biomicrofluidics, 14(4), p.044115. | https://aip.scitation.org/doi/10.1063/5.0020531 | |||||||||||||||||||||||||
100 | 2020-09-02 | Joanne | Lab relevant | Ichinari D, Ashikari Y, Mandai K, et al. A Novel Approach to Functionalization of Aryl Azides through the Generation and Reaction of Organolithium Species Bearing Masked Azides in Flow Microreactors[J]. Angewandte Chemie International Edition, 2020, 59(4): 1567-1571. | https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201912419 |