A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

1 | 1.1 - Terms of a Sequence | I can find a pattern from given terms of a sequence and identify additional terms. | ||||||||||||||||||

2 | 1.2 - Geometry Definitions | I can correctly name/draw/apply definitions of points/lines/line segments/planes and angles. | ||||||||||||||||||

3 | 1.3 - Counterexamples | I can create a counterexample for a given statement when possible. | ||||||||||||||||||

4 | 1.4 - Congruence postulates | I can apply the definition of congruence to relate conguent lines and angles both numerically and algebraically. | ||||||||||||||||||

5 | 1.5 - Addition postulates | I can apply segment and angle addition postulates to model numerical/graphical/algebraic problems. | ||||||||||||||||||

6 | 1.6 - Coordinate Operations | I can relate the coordinates of the endpoints of a line segment to the length of the line segment and its midpoint. | ||||||||||||||||||

7 | 1.7 - Area and Perimeter | I can determine the perimeter and area of complex figures made up of rectangles/triangles/circles and sections of circles. | ||||||||||||||||||

8 | 2.1 - Logic Symbols | I can use logical symbols to translate written statements as logical statements using symbols, and vice versa. | ||||||||||||||||||

9 | 2.2 - Conditional Statements | I can identify the hypothesis and conclusion of a conditional statement. I can write the inverse, converse, and contrapositive of a conditional statement. | ||||||||||||||||||

10 | 2.3 - Biconditional Statements | I can determine whether or not a bi-conditional statement can be used as a definition. | ||||||||||||||||||

11 | 2.4 - Justifying Algebra | I acn justify the steps of an algebra problem using properties of equality. | ||||||||||||||||||

12 | 2.5 - Congruence Proofs | I can write a complete two-column or paragraph proof to show that line segments are congruent. | ||||||||||||||||||

13 | 2.6 - Angle Congruence Proofs | I can write a proof showing that angles are congruent, supplementary, or complementary. | ||||||||||||||||||

14 | 3.1 - Parallel Lines and Transversals | I can relate angles formed by parallel lines cut by a transversal through related theorems and the corresponding angles postulate. I can prove lines are parallel through the converses of these theorems. | ||||||||||||||||||

15 | 3.2 - Parallel Lines and Algebra | I can solve algebra problems relates to parallel lines cut by a transversal. | ||||||||||||||||||

16 | 3.3 - Interior and Exterior Angles of a Triangle | I can apply the sum of interior angles of a triangle and exterior angle theorems to solve algebraic and numerical problems. | ||||||||||||||||||

17 | 3.4 - Justifying Statements | I can justify a statement in words using a definition, postulate, or theorem. | ||||||||||||||||||

18 | 3.5 - Angles of a Polygon | I can relate the sums of measures of interior and exterior angles of a polygon to the number of sides. I can determine the angle measures of regular polygons. | ||||||||||||||||||

19 | 3.6 - Coordinate Geometry & Parallel/Perpendicular Lines | I can use coordinates of points to determine the slopes of lines or line segments passing through those points. I can use slope to identify lines or line segments as parallel or perpendicular to each other. I can write the equation of a line given points and slope. | ||||||||||||||||||

20 | 4.1 - Congruence Statements | I can write complete congruence statements for congruent polygons. I can identify corresponding angles and sides for congruent polygons. | ||||||||||||||||||

21 | 4.2 - Proving Triangle Congruence | I can prove that triangles are congruent using the Side-Side-Side, Side-Angle-Side, Angle-Side-Angle postulates and the Angle-Angle-Side theorem. | ||||||||||||||||||

22 | 4.3 - Corresponding parts of congruent triangles | I can prove that parts of congruent triangles are congruent to each other. I can solve algebra problems relating congruent parts of triangles to each other. | ||||||||||||||||||

23 | 5-1: Overlapping Triangle Proofs | I can write a complete proof showing that parts of overlapping triangles are congruent. I can identify angles or sides that are common to two different triangles. | ||||||||||||||||||

24 | 5-2: Equilateral & Isosceles Triangles | I can describe and apply the properties of Equilateral and Isosceles Triangles for writing proofs and solving problems. | ||||||||||||||||||

25 | 5-3: Indirect Proof | I can write an indirect proof (or proof by contradiction) related to properties of congruent triangles. | ||||||||||||||||||

26 | 5-4: Midsegments & Bisectors | I can apply properties of midsegments of triangles to finding measurements of sides and angles in a triangle. I can apply properties of angle and perpendicular bisectors to find measurements. | ||||||||||||||||||

27 | 5-5: Points of Concurrency | I can draw medians, altitudes, and angle bisectors for triangles. I can identify the incenter, orthocenter, and centroid of a triangle. I can use these points of concurrency to circumscribe triangles or inscribe a circle inside triangles. | ||||||||||||||||||

28 | 5-6: Triangle Inequalities | I can use theorems and postulates of triangle inequality to prove relationships of sides and angles that are not congruent. I can determine if three given side lengths are possible lengths for a triangle. I can compare lengths of sides of a triangle given the angles opposite those sides. | ||||||||||||||||||

29 | 6.1 – Classifying Quadrilaterals | I can identify a quadrilateral as a parallelogram, rhombus, kite, trapezoid, isosceles trapezoid, square, or rectangle based on given side or angle measurements. | ||||||||||||||||||

30 | 6.2 – Quadrilateral Coordinate Proofs | I can write a coordinate proof to show that a given set of vertices represents a parallelogram, rhombus, kite, trapezoid, isosceles trapezoid, square, or rectangle. | ||||||||||||||||||

31 | 6.3 – Algebra & Quadrilateral Properties | I can write equations relating sides, angles, or lengths of diagonals using the properties of a given quadrilateral. I can solve these equations to find unknown measures of sides, angles, or diagonals. | ||||||||||||||||||

32 | 6.4 – Quadrilateral Proofs | I can write proofs for theorems describing properties of sides and angles of parallelograms, rhombuses, rectangles, and kites. I can use given information about sides and angles to prove that a quadrilateral is a parallelogram, rhombus, rectangle, or kite. | ||||||||||||||||||

33 | 7.1 – Proportions | I can solve equations in which two fractions are set equal to each other. I can identify cases when solutions to the proportion do not exist. | ||||||||||||||||||

34 | 7.2 – Similar Polygons | I can find the similarity ratio between two similar polygons. I can verify that two polygons are similar using the angles and measures of the sides. I can find unknown lengths of corresponding sides of similar polygons. | ||||||||||||||||||

35 | 7.3 – Similar Triangles | I can determine whether (or not) two triangles are similar to each other by the AA ~ postulate or SSS/SAS similarity theorems. I can use the results of these theorems to find the measures of unknown sides of similar triangles. | ||||||||||||||||||

36 | 7.4 – Indirect Measurement | I can find measurements of real world objects by modeling them with similar triangles. | ||||||||||||||||||

37 | 7.5 – Right Triangle Similarity | I can identify corresponding parts of similar right triangles and find their measures. | ||||||||||||||||||

38 | 8.1 – Applying Transformations | I can relate the coordinates of a pre-image of a transformation to the coordinates of an image. I can identify the type of transformation being applied by observing the pre-image and the image. *I can identify fixed points for a given transformation. | ||||||||||||||||||

39 | 8.2 – Translations | I can apply a translation to a set of points, a line, or a polygon. I can do this graphically (on paper), numerically (using coordinates) and algebraically. I can identify a specific translation for a given pre-image and image and apply that translation to another point in the plane. | ||||||||||||||||||

40 | 8.3 – Dilations | I can apply a dilation of constant k about the origin to a set of points or a polygon. I can identify the scale factor of a dilation given the pre-image and image | ||||||||||||||||||

41 | 8.4 – Point and Line Reflections | I can apply a point reflection or a line reflection to a set of points, a line, or a polygon. I can do this graphically, numerically, and algebraically. | ||||||||||||||||||

42 | 8.5 – Rotations | I can apply a rotation with center at the origin to a set of points, a line, or a polygon in the plane. I can do this graphically, numerically, and algebraically. | ||||||||||||||||||

43 | 8.6 – Symmetry | I can identify specific rotations and reflections that map a polygon or shape onto itself. I can identify points and lines of symmetry. | ||||||||||||||||||

44 | 8.7 – Compositions of Transformations | I can apply a composition of two or more transformations to a set of points, a line, or a polygon. | ||||||||||||||||||

45 | 9.1 – Special Right Triangles | I can find the exact measures of sides and identify angles of 30-60-90 triangles and 45-45-90 triangles. | ||||||||||||||||||

46 | 9.2 – Trigonometric Ratios | I can use trigonometric ratios to find exact or approximate measures for sides or angles in right triangles. | ||||||||||||||||||

47 | 9.3 – Areas using Trigonometry | I can use trigonometry to find the area of a polygon. | ||||||||||||||||||

48 | ||||||||||||||||||||

49 | ||||||||||||||||||||

50 | ||||||||||||||||||||

51 | ||||||||||||||||||||

52 | ||||||||||||||||||||

53 | ||||||||||||||||||||

54 | ||||||||||||||||||||

55 | ||||||||||||||||||||

56 | ||||||||||||||||||||

57 | ||||||||||||||||||||

58 | ||||||||||||||||||||

59 | ||||||||||||||||||||

60 | ||||||||||||||||||||

61 | ||||||||||||||||||||

62 | ||||||||||||||||||||

63 | ||||||||||||||||||||

64 | ||||||||||||||||||||

65 | ||||||||||||||||||||

66 | ||||||||||||||||||||

67 | ||||||||||||||||||||

68 | ||||||||||||||||||||

69 | ||||||||||||||||||||

70 | ||||||||||||||||||||

71 | ||||||||||||||||||||

72 | ||||||||||||||||||||

73 | ||||||||||||||||||||

74 | ||||||||||||||||||||

75 | ||||||||||||||||||||

76 | ||||||||||||||||||||

77 | ||||||||||||||||||||

78 | ||||||||||||||||||||

79 | ||||||||||||||||||||

80 | ||||||||||||||||||||

81 | ||||||||||||||||||||

82 | ||||||||||||||||||||

83 | ||||||||||||||||||||

84 | ||||||||||||||||||||

85 | ||||||||||||||||||||

86 | ||||||||||||||||||||

87 | ||||||||||||||||||||

88 | ||||||||||||||||||||

89 | ||||||||||||||||||||

90 | ||||||||||||||||||||

91 | ||||||||||||||||||||

92 | ||||||||||||||||||||

93 | ||||||||||||||||||||

94 | ||||||||||||||||||||

95 | ||||||||||||||||||||

96 | ||||||||||||||||||||

97 | ||||||||||||||||||||

98 | ||||||||||||||||||||

99 | ||||||||||||||||||||

100 |

Loading...

Main menu