Group_Meeting_Papers
 Share
The version of the browser you are using is no longer supported. Please upgrade to a supported browser.Dismiss

 
$
%
123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1
PaperPresentor
Date of Presentation
Date Presented
2
Ranatunga, K. (2018). Temperature Effects on Force and Actin–Myosin Interaction in Muscle: A Look Back on Some Experimental Findings. International Journal of Molecular Sciences, 19(5), 1538. http://doi.org/10.3390/ijms19051538Anjneya02-06-2018
3
De Rossi, M. C., Levi, V., & Bruno, L. (2018). Retraction of rod-like mitochondria during microtubule-dependent transport. Bioscience Reports, BSR20180208. http://doi.org/10.1042/BSR20180208Aritra02-06-2018
4
Kellogg, E. H., Hejab, N. M. A., Poepsel, S., Downing, K. H., DiMaio, F., & Nogales, E. (2018). Near-atomic model of microtubule-tau interactions. Science, eaat1780. http://doi.org/10.1126/science.aat1780Vishwambhar16-06-2018
5
Oria, R., Wiegand, T., Escribano, J., Elosegui-Artola, A., Uriarte, J. J., Moreno-Pulido, C., … Roca-Cusachs, P. (2017). Force loading explains spatial sensing of ligands by cells. Nature, 552(7684), 219–224. http://doi.org/10.1038/nature24662Bajarang21-07-2018
6
Sanghavi, P., D’Souza, A., Rai, A., Rai, A., Padinhatheeri, R., & Mallik, R. (2018). Coin Tossing Explains the Activity of Opposing Microtubule Motors on Phagosomes. Current Biology, 28(9), 1460–1466.e4. http://doi.org/10.1016/j.cub.2018.03.041Saumya08-11-2018
7
Maeshima, K., Hibino, K., & Hudson, D. F. (2018). Condensins under the microscope. The Journal of Cell Biology, jcb.201804078. http://doi.org/10.1083/jcb.201804078Saumya07-07-2018
8
Reck-Peterson, S. L., Redwine, W. B., Vale, R. D., & Carter, A. P. (2018). The cytoplasmic dynein transport machinery and its many cargoes. Nature Reviews Molecular Cell Biology. http://doi.org/10.1038/s41580-018-0004-3Anjneya
9
Monroy, B. Y., Sawyer, D. L., Ackermann, B. E., Borden, M. M., Tan, T. C., & Ori-McKenney, K. M. (2018). Competition between microtubule-associated proteins directs motor transport. Nature Communications, 9(1), 1487. http://doi.org/10.1038/s41467-018-03909-2Khushnandan21-07-2018
10
Lin, J., & Nicastro, D. (2018). Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science, 360(6387), eaar1968. http://doi.org/10.1126/science.aar1968Aritra29-09-2018
11
Benoit, M. P. M. H., Asenjo, A. B., & Sosa, H. (2018). Cryo-EM reveals the structural basis of microtubule depolymerization by kinesin-13s. Nature Communications, 9(1), 1662. http://doi.org/10.1038/s41467-018-04044-8Saumya29-09-2018
12
Brouhard, G. J., & Rice, L. M. (2018). Microtubule dynamics: an interplay of biochemistry and mechanics. Nature Reviews Molecular Cell Biology. http://doi.org/10.1038/s41580-018-0009-yAnjneya
13
Brunden, K. R., Lee, V. M.-Y., Smith, A. B., Trojanowski, J. Q., & Ballatore, C. (2017). Altered microtubule dynamics in neurodegenerative disease: Therapeutic potential of microtubule-stabilizing drugs. Neurobiology of Disease, 105, 328–335. http://doi.org/10.1016/j.nbd.2016.12.021Khushnandan
14
Kim, K., Yoshinaga, N., Bhattacharyya, S., Nakazawa, H., Umetsu, M., & Teizer, W. (2018). Large-scale chirality in an active layer of microtubules and kinesin motor proteins. Soft Matter. http://doi.org/10.1039/c7sm02298kKhushnandan
15
Vukušić, K., Buđa, R., Bosilj, A., Milas, A., Pavin, N., & Tolić, I. M. (2017). Microtubule Sliding within the Bridging Fiber Pushes Kinetochore Fibers Apart to Segregate Chromosomes. Developmental Cell. http://doi.org/10.1016/j.devcel.2017.09.010Aritra08-11-2018
16
Misiura, M. M., Wang, Q., Cheung, M. S., & Kolomeisky, A. B. (2018). Theoretical Investigations of the Role of Mutations in Dynamics of Kinesin Motor Proteins. The Journal of Physical Chemistry B, acs.jpcb.8b00830. http://doi.org/10.1021/acs.jpcb.8b00830Khushnandan
17
Ishikawa, H., & Marshall, W. F. (2017). Testing the time-of-flight model for flagellar length sensing. Molecular Biology of the Cell, 28(23), 3447–3456. http://doi.org/10.1091/mbc.E17-06-0384Saumya
18
Craig, E. M., Yeung, H. T., Rao, A. N., & Baas, P. W. (2017). Polarity sorting of axonal microtubules: a computational study. Molecular Biology of the Cell, 28(23), 3271–3285. http://doi.org/10.1091/mbc.E17-06-0380saumya
19
Kumbhar, B. V., Panda, D., & Kunwar, A. (2018). Interaction of microtubule depolymerizing agent indanocine with different human aαβ tubulin isotypes. PLoS ONE, 13(3). http://doi.org/10.1371/journal.pone.0194934Khushnandan
20
Dalmau-Mena, I., Del Pino, P., Pelaz, B., Cuesta-Geijo, M. Á., Galindo, I., Moros, M., … Alonso, C. (2018). Nanoparticles engineered to bind cellular motors for efficient delivery. Journal of Nanobiotechnology, 16(1), 33. http://doi.org/10.1186/s12951-018-0354-1Bajarang29-09-2018
21
Li, Q., Tseng, K.-F., King, S. J., Qiu, W., & Xu, J. (2018). A fluid membrane enhances the velocity of cargo transport by small teams of kinesin-1. The Journal of Chemical Physics, 148(12), 123318. http://doi.org/10.1063/1.5006806
22
Aumeier, C., Schaedel, L., Gaillard, J., John, K., Blanchoin, L., & Théry, M. (2016). Self-repair promotes microtubule rescue. Nature Cell Biology. http://doi.org/10.1038/ncb3406
23
Hafner, A. E., & Rieger, H. (2018). Spatial Cytoskeleton Organization Supports Targeted Intracellular Transport. Biophysical Journal, 114(6), 1420–1432. http://doi.org/10.1016/j.bpj.2018.01.042
24
Caporizzo, M. A., Fishman, C. E., Sato, O., Jamiolkowski, R. M., Ikebe, M., & Goldman, Y. E. (2018). The Antiparallel Dimerization of Myosin X Imparts Bundle Selectivity for Processive Motility. Biophysical Journal, 114(6), 1400–1410. http://doi.org/10.1016/j.bpj.2018.01.038
25
Li, S., Wang, C., & Nithiarasu, P. (2018). Effects of the cross-linkers on the buckling of microtubules in cells. Journal of Biomechanics. http://doi.org/10.1016/j.jbiomech.2018.03.002
26
Wang, J. T., & Stearns, T. (2018). The ABCs of Centriole Architecture: The Form and Function of Triplet Microtubules. Cold Spring Harbor Symposia on Quantitative Biology, 034496. http://doi.org/10.1101/sqb.2017.82.034496
27
Chudinova, E. M., & Nadezhdina, E. S. (2018). Interactions between the Translation Machinery and Microtubules. Biochemistry (Moscow), 83(S1), S176–S189. http://doi.org/10.1134/S0006297918140146
28
Gao, M., Berghaus, M., Möbitz, S., Schuabb, V., Erwin, N., Herzog, M., … Winter, R. (2018). On the Origin of Microtubules’ High-Pressure Sensitivity. Biophysical Journal, 114(5), 1080–1090. http://doi.org/10.1016/j.bpj.2018.01.021
29
Dixit, R., & Petry, S. (2018). The life of a microtubule. Molecular Biology of the Cell, 29(6), 689–689. http://doi.org/10.1091/mbc.E17-11-0677
30
Ghawanmeh, A. A., Chong, K. F., Sarkar, S. M., Bakar, M. A., Othaman, R., & Khalid, R. M. (2018). Colchicine prodrugs and codrugs: Chemistry and bioactivities. European Journal of Medicinal Chemistry, 144, 229–242. http://doi.org/10.1016/j.ejmech.2017.12.029
31
Toda, A., Tanaka, H., & Kurisu, G. (2018). Structural atlas of dynein motors at atomic resolution. Biophysical Reviews. http://doi.org/10.1007/s12551-018-0402-y
32
Radakovic, A., & Boger, D. L. (2018). High expression of class III β-tubulin has no impact on functional cancer cell growth inhibition of a series of key vinblastine analogs. Bioorganic & Medicinal Chemistry Letters, 28(5), 863–865. http://doi.org/10.1016/j.bmcl.2018.02.006
33
King, S. M., & Sale, W. S. (2018). Fifty years of microtubule sliding in cilia. Molecular Biology of the Cell, 29(6), 698–701. http://doi.org/10.1091/mbc.E17-07-0483
34
Kaplan, L., Ierokomos, A., Chowdary, P., Bryant, Z., & Cui, B. (2018). Rotation of endosomes demonstrates coordination of molecular motors during axonal transport. Science Advances, 4(3), e1602170. http://doi.org/10.1126/sciadv.1602170
35
Peet, D. R., Burroughs, N. J., & Cross, R. A. (2018). Kinesin expands and stabilizes the GDP-microtubule lattice. Nature Nanotechnology. http://doi.org/10.1038/s41565-018-0084-4
36
Tripathi, S., Srivastava, G., Singh, A., Prakasham, A. P., Negi, A. S., & Sharma, A. (2018). Insight into microtubule destabilization mechanism of 3,4,5-trimethoxyphenyl indanone derivatives using molecular dynamics simulation and conformational modes analysis. Journal of Computer-Aided Molecular Design. http://doi.org/10.1007/s10822-018-0109-y
37
Moskalensky, A. E., Yurkin, M. A., Muliukov, A. R., Litvinenko, A. L., Nekrasov, V. M., Chernyshev, A. V., & Maltsev, V. P. (2018). Method for the simulation of blood platelet shape and its evolution during activation. PLOS Computational Biology, 14(3), e1005899. http://doi.org/10.1371/journal.pcbi.1005899
38
Titus, M. A. (2018). Myosin-Driven Intracellular Transport. Cold Spring Harbor Perspectives in Biology, 10(3), a021972. http://doi.org/10.1101/cshperspect.a021972
39
Iqbal, K., Liu, F., & Gong, C.-X. (2018). Recent developments with tau-based drug discovery. Expert Opinion on Drug Discovery, 1–12. http://doi.org/10.1080/17460441.2018.1445084
40
Toda, A., Tanaka, H., & Kurisu, G. (2018). Structural atlas of dynein motors at atomic resolution. Biophysical Reviews. http://doi.org/10.1007/s12551-018-0402-y
41
Svitkina, T. M. (2018). Ultrastructure of the actin cytoskeleton. Current Opinion in Cell Biology, 54, 1–8. http://doi.org/10.1016/j.ceb.2018.02.007
42
Nebenführ, A., & Dixit, R. (2018). Kinesins and Myosins: Molecular Motors that Coordinate Cellular Functions in Plants. Annual Review of Plant Biology, 69(1), annurev-arplant-042817-040024. http://doi.org/10.1146/annurev-arplant-042817-040024
43
Gilbert, S. P., Guzik-Lendrum, S., & Rayment, I. (2018). Kinesin-2 motors: kinetics and biophysics. Journal of Biological Chemistry, jbc.R117.001324. http://doi.org/10.1074/jbc.R117.001324
44
Koliou, P., Karavasilis, V., Theochari, M., Pollack, S., Jones, R., & Thway, K. (2018). Advances in the treatment of soft tissue sarcoma: focus on eribulin. Cancer Management and Research, Volume 10, 207–216. http://doi.org/10.2147/CMAR.S143019
45
Muretta, J. M., Reddy, B. J. N., Scarabelli, G., Thompson, A. F., Jariwala, S., Major, J., … Rosenfeld, S. S. (2018). A posttranslational modification of the mitotic kinesin Eg5 that enhances its mechanochemical coupling and alters its mitotic function. Proceedings of the National Academy of Sciences, 201718290. http://doi.org/10.1073/pnas.1718290115
46
Grotjahn, D. A., Chowdhury, S., Xu, Y., McKenney, R. J., Schroer, T. A., & Lander, G. C. (2018). Cryo-electron tomography reveals that dynactin recruits a team of dyneins for processive motility. Nature Structural & Molecular Biology. http://doi.org/10.1038/s41594-018-0027-7
47
Urnavicius, L., Lau, C. K., Elshenawy, M. M., Morales-Rios, E., Motz, C., Yildiz, A., & Carter, A. P. (2018). Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature, 554(7691), 202–206. http://doi.org/10.1038/nature25462
48
Hendel, N. L., Thomson, M., & Marshall, W. F. (2018). Diffusion as a Ruler: Modeling Kinesin Diffusion as a Length Sensor for Intraflagellar Transport. Biophysical Journal, 114(3), 663–674. http://doi.org/10.1016/j.bpj.2017.11.3784
49
Di Martile, M., Del Bufalo, D., & Trisciuoglio, D. (2016). The multifaceted role of lysine acetylation in cancer: prognostic biomarker and therapeutic target. Oncotarget, 7(34), 55789–55810. http://doi.org/10.18632/oncotarget.10048
50
Feng, Q., Mickolajczyk, K. J., Chen, G.-Y., & Hancock, W. O. (2018). Motor Reattachment Kinetics Play a Dominant Role in Multimotor-Driven Cargo Transport. Biophysical Journal, 114(2), 400–409. http://doi.org/10.1016/j.bpj.2017.11.016
51
Vu, H. T., Chakrabarti, S., Hinczewski, M., & Thirumalai, D. (2016). Discrete Step Sizes of Molecular Motors Lead to Bimodal Non-Gaussian Velocity Distributions under Force. Physical Review Letters, 117(7), 078101. http://doi.org/10.1103/PhysRevLett.117.078101
52
van Haren, J., Charafeddine, R. A., Ettinger, A., Wang, H., Hahn, K. M., & Wittmann, T. (2018). Local control of intracellular microtubule dynamics by EB1 photodissociation. Nature Cell Biology. http://doi.org/10.1038/s41556-017-0028-5
53
Bugiel, M., Mitra, A., Girardo, S., Diez, S., & Schäffer, E. (2018). Measuring Microtubule Supertwist and Defects by Three-Dimensional-Force-Clamp Tracking of Single Kinesin-1 Motors. Nano Letters, 18(2), 1290–1295. http://doi.org/10.1021/acs.nanolett.7b04971
54
Bollinger, J. A., & Stevens, M. J. (2018). Catastrophic depolymerization of microtubules driven by subunit shape change. Soft Matter. http://doi.org/10.1039/c7sm02033c
55
Herzog, W. (2018). The multiple roles of titin in muscle contraction and force production. Biophysical Reviews. http://doi.org/10.1007/s12551-017-0395-y
56
Hemmat, M., Castle, B. T., & Odde, D. J. (2018). Microtubule dynamics: moving toward a multi-scale approach. Current Opinion in Cell Biology, 50, 8–13. http://doi.org/10.1016/j.ceb.2017.12.013
57
Paz, J., & Lüders, J. (2017). Microtubule-Organizing Centers: Towards a Minimal Parts List. Trends in Cell Biology, 28(3), 176–187. http://doi.org/10.1016/j.tcb.2017.10.005
58
Ryan, J. M., & Nebenführ, A. (2018). Update on Myosin Motors: Molecular Mechanisms and Physiological Functions. Plant Physiology, 176(1), 119–127. http://doi.org/10.1104/pp.17.01429
59
Mead, A. F., Osinalde, N., Ørtenblad, N., Nielsen, J., Brewer, J., Vellema, M., … Elemans, C. P. (2017). Fundamental constraints in synchronous muscle limit superfast motor control in vertebrates. ELife, 6. http://doi.org/10.7554/eLife.29425
60
Singh, S. K., Pandey, H., Al-Bassam, J., & Gheber, L. (2018). Bidirectional motility of kinesin-5 motor proteins: structural determinants, cumulative functions and physiological roles. Cellular and Molecular Life Sciences. http://doi.org/10.1007/s00018-018-2754-7
61
Tan, R., Foster, P. J., Needleman, D. J., & McKenney, R. J. (2018). Cooperative Accumulation of Dynein-Dynactin at Microtubule Minus-Ends Drives Microtubule Network Reorganization. Developmental Cell, 44(2), 233–247.e4. http://doi.org/10.1016/j.devcel.2017.12.023
62
Hemmat, M., Castle, B. T., & Odde, D. J. (2018). Microtubule dynamics: moving toward a multi-scale approach. Current Opinion in Cell Biology, 50, 8–13. http://doi.org/10.1016/j.ceb.2017.12.013
63
Yue, Y., Blasius, T. L., Zhang, S., Jariwala, S., Walker, B., Grant, B. J., … Verhey, K. J. (2018). Altered chemomechanical coupling causes impaired motility of the kinesin-4 motors KIF27 and KIF7. The Journal of Cell Biology, jcb.201708179. http://doi.org/10.1083/jcb.201708179
64
McIntosh, B. B., Pyrpassopoulos, S., Holzbaur, E. L. F., & Ostap, E. M. (2018). Opposing Kinesin and Myosin-I Motors Drive Membrane Deformation and Tubulation along Engineered Cytoskeletal Networks. Current Biology. http://doi.org/10.1016/j.cub.2017.12.007
65
Allan, V. J. (2016). A tale of two α‐tubulin tails. The EMBO Journal, 35(11), 1155–1157. http://doi.org/10.15252/embj.201694325
66
Cao, Y.-N., Zheng, L.-L., Wang, D., Liang, X.-X., Gao, F., & Zhou, X.-L. (2018). Recent advances in microtubule-stabilizing agents. European Journal of Medicinal Chemistry, 143, 806–828. http://doi.org/10.1016/j.ejmech.2017.11.062
67
Strzyz, P. (2016). Post-translational modifications: Extension of the tubulin code. Nature Reviews Molecular Cell Biology, 17(10), 609–609. http://doi.org/10.1038/nrm.2016.117
68
Janke, C., & Montagnac, G. (2017). Causes and Consequences of Microtubule Acetylation. Current Biology, 27(23), R1287–R1292. http://doi.org/10.1016/j.cub.2017.10.044
69
Ruhnow, F., Kloβ, L., & Diez, S. (2017). Challenges in Estimating the Motility Parameters of Single Processive Motor Proteins. Biophysical Journal, 113(11), 2433–2443. http://doi.org/10.1016/j.bpj.2017.09.024
70
Rao, A. N., & Baas, P. W. (2017). Polarity Sorting of Microtubules in the Axon. Trends in Neurosciences. http://doi.org/10.1016/j.tins.2017.11.002
71
Mead, A. F., Osinalde, N., Ørtenblad, N., Nielsen, J., Brewer, J., Vellema, M., … Elemans, C. P. (2017). Fundamental constraints in synchronous muscle limit superfast motor control in vertebrates. ELife, 6. http://doi.org/10.7554/eLife.29425
72
Ryan, J. M., & Nebenführ, A. (2018). Update on Myosin Motors: Molecular Mechanisms and Physiological Functions. Plant Physiology, 176(1), 119–127. http://doi.org/10.1104/pp.17.01429
73
Mueller, C., Graindorge, A., & Soldati-Favre, D. (2017). Functions of myosin motors tailored for parasitism. Current Opinion in Microbiology, 40, 113–122. http://doi.org/10.1016/j.mib.2017.11.003
74
Rai, P., Kumar, M., Sharma, G., Barak, P., Das, S., Kamat, S. S., & Mallik, R. (2017). Kinesin-dependent mechanism for controlling triglyceride secretion from the liver. Proceedings of the National Academy of Sciences, 114(49), 12958–12963. http://doi.org/10.1073/pnas.1713292114
75
Lewis, T. R., Zareba, M., Link, B. A., & Besharse, J. C. (2018). Cone myoid elongation involves unidirectional microtubule movement mediated by dynein-1. Molecular Biology of the Cell, 29(2), 180–190. http://doi.org/10.1091/mbc.E17-08-0525
76
Semenova, I., Gupta, D., Usui, T., Hayakawa, I., Cowan, A., & Rodionov, V. (2017). Stimulation of microtubule-based transport by nucleation of microtubules on pigment granules. Molecular Biology of the Cell, 28(11), 1418–1425. http://doi.org/10.1091/mbc.E16-08-0571
77
Stam, S., Freedman, S. L., Banerjee, S., Weirich, K. L., Dinner, A. R., & Gardel, M. L. (2017). Filament rigidity and connectivity tune the deformation modes of active biopolymer networks. Proceedings of the National Academy of Sciences, 114(47), E10037–E10045. http://doi.org/10.1073/pnas.1708625114
78
Liu, N., Pidaparti, R., & Wang, X. (2017). Effect of amino acid mutations on intra-dimer tubulin-tubulin binding strength of microtubules. Integrative Biology : Quantitative Biosciences from Nano to Macro, 9(12), 925–933. http://doi.org/10.1039/c7ib00113d
79
Favaro, M. T. de P., Unzueta, U., de Cabo, M., Villaverde, A., Ferrer-Miralles, N., & Azzoni, A. R. (2018). Intracellular trafficking of a dynein-based nanoparticle designed for gene delivery. European Journal of Pharmaceutical Sciences, 112, 71–78. http://doi.org/10.1016/j.ejps.2017.11.002
80
Fallesen, T., Roostalu, J., Duellberg, C., Pruessner, G., & Surrey, T. (2017). Ensembles of Bidirectional Kinesin Cin8 Produce Additive Forces in Both Directions of Movement. Biophysical Journal, 113(9), 2055–2067. http://doi.org/10.1016/j.bpj.2017.09.006
81
Kitajima, T. S. (2018). Mechanisms of kinetochore-microtubule attachment errors in mammalian oocytes. Development, Growth & Differentiation. http://doi.org/10.1111/dgd.12410
82
Lam, A. T.-C., Tsitkov, S., Zhang, Y., & Hess, H. (2018). Reversibly bound kinesin-1 motor proteins propelling microtubules demonstrate dynamic recruitment of active building blocks. Nano Letters, acs.nanolett.7b05361. http://doi.org/10.1021/acs.nanolett.7b05361
83
Kumbhar, B. V., Borogaon, A., Panda, D., & Kunwar, A. (2016). Exploring the origin of differential binding affinities of human tubulin isotypes αβII, αβIII and αβIV for DAMA-colchicine using homology modelling, molecular docking and molecular dynamics simulations. PLoS ONE, 11(5). http://doi.org/10.1371/journal.pone.0156048
84
Takshak, A., & Kunwar, A. (2016). Importance of anisotropy in detachment rates for force production and cargo transport by a team of motor proteins. Protein Science, 25(5). http://doi.org/10.1002/pro.2905
85
Amrutha, A. S., Kumar, K. R. S., Kikukawa, T., & Tamaoki, N. (2017). Targeted Activation of Molecular Transportation by Visible Light. ACS Nano, acsnano.7b06059. http://doi.org/10.1021/acsnano.7b06059
86
Hwang, W., Lang, M., & Karplus, M. (2017). Kinesin motility driven by subdomain dynamics. ELife, 6. http://doi.org/10.7554/eLife.28948
87
Omabegho, T., Gurel, P. S., Cheng, C. Y., Kim, L. Y., Ruijgrok, P. V., Das, R., … Bryant, Z. (2017). Controllable molecular motors engineered from myosin and RNA. Nature Nanotechnology. http://doi.org/10.1038/s41565-017-0005-y
88
Khataee, H., Naseri, S., Zhong, Y., & Liew, A. W.-C. (2017). Unbinding of Kinesin from Microtubule in the Strongly Bound States Enhances under Assisting Forces. Molecular Informatics. http://doi.org/10.1002/minf.201700092
89
Schneider, I., & Lénárt, P. (2017). Chromosome Segregation: Is the Spindle All About Microtubules? Current Biology, 27(21), R1168–R1170. http://doi.org/10.1016/j.cub.2017.09.022
90
Pollard, T. D. (2017). Nine unanswered questions about cytokinesis. The Journal of Cell Biology, 216(10), 3007–3016. http://doi.org/10.1083/jcb.201612068
91
Abraham, Z., Hawley, E., Hayosh, D., Webster-Wood, V., & Akkus, O. (2017). Kinesin and dynein mechanics: measurement methods and research applications. Journal of Biomechanical Engineering. http://doi.org/10.1115/1.4037886
92
Siddiqui, N., & Straube, A. (2017). Intracellular cargo transport by kinesin-3 motors. Biochemistry (Moscow), 82(7), 803–815. http://doi.org/10.1134/S0006297917070057
93
Reinemann, D. N., Sturgill, E. G., Das, D. K., Degen, M. S., Vörös, Z., Hwang, W., … Lang, M. J. (2017). Collective Force Regulation in Anti-parallel Microtubule Gliding by Dimeric Kif15 Kinesin Motors. Current Biology, 27(18), 2810–2820.e6. http://doi.org/10.1016/j.cub.2017.08.018
94
Ishikawa, H., & Marshall, W. F. (2017). Testing the time-of-flight model for flagellar length sensing. Molecular Biology of the Cell, mbc.E17-06-0384. http://doi.org/10.1091/mbc.E17-06-0384
95
De Rossi, M. C., Wetzler, D. E., Benseñor, L., De Rossi, M. E., Sued, M., Rodríguez, D., … Levi, V. (2017). Mechanical coupling of microtubule-dependent motor teams during peroxisome transport in Drosophila S2 cells. Biochimica et Biophysica Acta (BBA) - General Subjects, 1861(12), 3178–3189. http://doi.org/10.1016/j.bbagen.2017.09.009
96
Howard, J., & Garzon-Coral, C. (2017). Physical Limits on the Precision of Mitotic Spindle Positioning by Microtubule Pushing forces. BioEssays, 39(11), 1700122. http://doi.org/10.1002/bies.201700122
97
Wang, Q., Diehl, M. R., Jana, B., Cheung, M. S., Kolomeisky, A. B., & Onuchic, J. N. (2017). Molecular origin of the weak susceptibility of kinesin velocity to loads and its relation to the collective behavior of kinesins. Proceedings of the National Academy of Sciences, 114(41), 201710328. http://doi.org/10.1073/pnas.1710328114
98
Prevo, B., Scholey, J. M., & Peterman, E. J. G. (2017). Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. The FEBS Journal, 284(18), 2905–2931. http://doi.org/10.1111/febs.14068
99
Craig, E. M., Yeung, H. T., Rao, A. N., & Baas, P. W. (2017). Polarity Sorting of Axonal Microtubules: A Computational Study. Molecular Biology of the Cell, mbc.E17-06-0380. http://doi.org/10.1091/mbc.E17-06-0380
100
Balabanian, L., Berger, C. L., & Hendricks, A. G. (2017). Acetylated Microtubules Are Preferentially Bundled Leading to Enhanced Kinesin-1 Motility. Biophysical Journal, 113(7), 1551–1560. http://doi.org/10.1016/j.bpj.2017.08.009
Loading...
Main menu