The version of the browser you are using is no longer supported. Please upgrade to a supported browser.Dismiss

Date of Presentation
Date Presented
Ranatunga, K. (2018). Temperature Effects on Force and Actin–Myosin Interaction in Muscle: A Look Back on Some Experimental Findings. International Journal of Molecular Sciences, 19(5), 1538.
De Rossi, M. C., Levi, V., & Bruno, L. (2018). Retraction of rod-like mitochondria during microtubule-dependent transport. Bioscience Reports, BSR20180208.
Kellogg, E. H., Hejab, N. M. A., Poepsel, S., Downing, K. H., DiMaio, F., & Nogales, E. (2018). Near-atomic model of microtubule-tau interactions. Science, eaat1780.
Oria, R., Wiegand, T., Escribano, J., Elosegui-Artola, A., Uriarte, J. J., Moreno-Pulido, C., … Roca-Cusachs, P. (2017). Force loading explains spatial sensing of ligands by cells. Nature, 552(7684), 219–224.
Sanghavi, P., D’Souza, A., Rai, A., Rai, A., Padinhatheeri, R., & Mallik, R. (2018). Coin Tossing Explains the Activity of Opposing Microtubule Motors on Phagosomes. Current Biology, 28(9), 1460–1466.e4.
Maeshima, K., Hibino, K., & Hudson, D. F. (2018). Condensins under the microscope. The Journal of Cell Biology, jcb.201804078.
Reck-Peterson, S. L., Redwine, W. B., Vale, R. D., & Carter, A. P. (2018). The cytoplasmic dynein transport machinery and its many cargoes. Nature Reviews Molecular Cell Biology.
Monroy, B. Y., Sawyer, D. L., Ackermann, B. E., Borden, M. M., Tan, T. C., & Ori-McKenney, K. M. (2018). Competition between microtubule-associated proteins directs motor transport. Nature Communications, 9(1), 1487.
Lin, J., & Nicastro, D. (2018). Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science, 360(6387), eaar1968.
Benoit, M. P. M. H., Asenjo, A. B., & Sosa, H. (2018). Cryo-EM reveals the structural basis of microtubule depolymerization by kinesin-13s. Nature Communications, 9(1), 1662.
Brouhard, G. J., & Rice, L. M. (2018). Microtubule dynamics: an interplay of biochemistry and mechanics. Nature Reviews Molecular Cell Biology.
Brunden, K. R., Lee, V. M.-Y., Smith, A. B., Trojanowski, J. Q., & Ballatore, C. (2017). Altered microtubule dynamics in neurodegenerative disease: Therapeutic potential of microtubule-stabilizing drugs. Neurobiology of Disease, 105, 328–335.
Kim, K., Yoshinaga, N., Bhattacharyya, S., Nakazawa, H., Umetsu, M., & Teizer, W. (2018). Large-scale chirality in an active layer of microtubules and kinesin motor proteins. Soft Matter.
Vukušić, K., Buđa, R., Bosilj, A., Milas, A., Pavin, N., & Tolić, I. M. (2017). Microtubule Sliding within the Bridging Fiber Pushes Kinetochore Fibers Apart to Segregate Chromosomes. Developmental Cell.
Misiura, M. M., Wang, Q., Cheung, M. S., & Kolomeisky, A. B. (2018). Theoretical Investigations of the Role of Mutations in Dynamics of Kinesin Motor Proteins. The Journal of Physical Chemistry B, acs.jpcb.8b00830.
Ishikawa, H., & Marshall, W. F. (2017). Testing the time-of-flight model for flagellar length sensing. Molecular Biology of the Cell, 28(23), 3447–3456.
Craig, E. M., Yeung, H. T., Rao, A. N., & Baas, P. W. (2017). Polarity sorting of axonal microtubules: a computational study. Molecular Biology of the Cell, 28(23), 3271–3285.
Kumbhar, B. V., Panda, D., & Kunwar, A. (2018). Interaction of microtubule depolymerizing agent indanocine with different human aαβ tubulin isotypes. PLoS ONE, 13(3).
Dalmau-Mena, I., Del Pino, P., Pelaz, B., Cuesta-Geijo, M. Á., Galindo, I., Moros, M., … Alonso, C. (2018). Nanoparticles engineered to bind cellular motors for efficient delivery. Journal of Nanobiotechnology, 16(1), 33.
Li, Q., Tseng, K.-F., King, S. J., Qiu, W., & Xu, J. (2018). A fluid membrane enhances the velocity of cargo transport by small teams of kinesin-1. The Journal of Chemical Physics, 148(12), 123318.
Aumeier, C., Schaedel, L., Gaillard, J., John, K., Blanchoin, L., & Théry, M. (2016). Self-repair promotes microtubule rescue. Nature Cell Biology.
Hafner, A. E., & Rieger, H. (2018). Spatial Cytoskeleton Organization Supports Targeted Intracellular Transport. Biophysical Journal, 114(6), 1420–1432.
Caporizzo, M. A., Fishman, C. E., Sato, O., Jamiolkowski, R. M., Ikebe, M., & Goldman, Y. E. (2018). The Antiparallel Dimerization of Myosin X Imparts Bundle Selectivity for Processive Motility. Biophysical Journal, 114(6), 1400–1410.
Li, S., Wang, C., & Nithiarasu, P. (2018). Effects of the cross-linkers on the buckling of microtubules in cells. Journal of Biomechanics.
Wang, J. T., & Stearns, T. (2018). The ABCs of Centriole Architecture: The Form and Function of Triplet Microtubules. Cold Spring Harbor Symposia on Quantitative Biology, 034496.
Chudinova, E. M., & Nadezhdina, E. S. (2018). Interactions between the Translation Machinery and Microtubules. Biochemistry (Moscow), 83(S1), S176–S189.
Gao, M., Berghaus, M., Möbitz, S., Schuabb, V., Erwin, N., Herzog, M., … Winter, R. (2018). On the Origin of Microtubules’ High-Pressure Sensitivity. Biophysical Journal, 114(5), 1080–1090.
Dixit, R., & Petry, S. (2018). The life of a microtubule. Molecular Biology of the Cell, 29(6), 689–689.
Ghawanmeh, A. A., Chong, K. F., Sarkar, S. M., Bakar, M. A., Othaman, R., & Khalid, R. M. (2018). Colchicine prodrugs and codrugs: Chemistry and bioactivities. European Journal of Medicinal Chemistry, 144, 229–242.
Toda, A., Tanaka, H., & Kurisu, G. (2018). Structural atlas of dynein motors at atomic resolution. Biophysical Reviews.
Radakovic, A., & Boger, D. L. (2018). High expression of class III β-tubulin has no impact on functional cancer cell growth inhibition of a series of key vinblastine analogs. Bioorganic & Medicinal Chemistry Letters, 28(5), 863–865.
King, S. M., & Sale, W. S. (2018). Fifty years of microtubule sliding in cilia. Molecular Biology of the Cell, 29(6), 698–701.
Kaplan, L., Ierokomos, A., Chowdary, P., Bryant, Z., & Cui, B. (2018). Rotation of endosomes demonstrates coordination of molecular motors during axonal transport. Science Advances, 4(3), e1602170.
Peet, D. R., Burroughs, N. J., & Cross, R. A. (2018). Kinesin expands and stabilizes the GDP-microtubule lattice. Nature Nanotechnology.
Tripathi, S., Srivastava, G., Singh, A., Prakasham, A. P., Negi, A. S., & Sharma, A. (2018). Insight into microtubule destabilization mechanism of 3,4,5-trimethoxyphenyl indanone derivatives using molecular dynamics simulation and conformational modes analysis. Journal of Computer-Aided Molecular Design.
Moskalensky, A. E., Yurkin, M. A., Muliukov, A. R., Litvinenko, A. L., Nekrasov, V. M., Chernyshev, A. V., & Maltsev, V. P. (2018). Method for the simulation of blood platelet shape and its evolution during activation. PLOS Computational Biology, 14(3), e1005899.
Titus, M. A. (2018). Myosin-Driven Intracellular Transport. Cold Spring Harbor Perspectives in Biology, 10(3), a021972.
Iqbal, K., Liu, F., & Gong, C.-X. (2018). Recent developments with tau-based drug discovery. Expert Opinion on Drug Discovery, 1–12.
Toda, A., Tanaka, H., & Kurisu, G. (2018). Structural atlas of dynein motors at atomic resolution. Biophysical Reviews.
Svitkina, T. M. (2018). Ultrastructure of the actin cytoskeleton. Current Opinion in Cell Biology, 54, 1–8.
Nebenführ, A., & Dixit, R. (2018). Kinesins and Myosins: Molecular Motors that Coordinate Cellular Functions in Plants. Annual Review of Plant Biology, 69(1), annurev-arplant-042817-040024.
Gilbert, S. P., Guzik-Lendrum, S., & Rayment, I. (2018). Kinesin-2 motors: kinetics and biophysics. Journal of Biological Chemistry, jbc.R117.001324.
Koliou, P., Karavasilis, V., Theochari, M., Pollack, S., Jones, R., & Thway, K. (2018). Advances in the treatment of soft tissue sarcoma: focus on eribulin. Cancer Management and Research, Volume 10, 207–216.
Muretta, J. M., Reddy, B. J. N., Scarabelli, G., Thompson, A. F., Jariwala, S., Major, J., … Rosenfeld, S. S. (2018). A posttranslational modification of the mitotic kinesin Eg5 that enhances its mechanochemical coupling and alters its mitotic function. Proceedings of the National Academy of Sciences, 201718290.
Grotjahn, D. A., Chowdhury, S., Xu, Y., McKenney, R. J., Schroer, T. A., & Lander, G. C. (2018). Cryo-electron tomography reveals that dynactin recruits a team of dyneins for processive motility. Nature Structural & Molecular Biology.
Urnavicius, L., Lau, C. K., Elshenawy, M. M., Morales-Rios, E., Motz, C., Yildiz, A., & Carter, A. P. (2018). Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature, 554(7691), 202–206.
Hendel, N. L., Thomson, M., & Marshall, W. F. (2018). Diffusion as a Ruler: Modeling Kinesin Diffusion as a Length Sensor for Intraflagellar Transport. Biophysical Journal, 114(3), 663–674.
Di Martile, M., Del Bufalo, D., & Trisciuoglio, D. (2016). The multifaceted role of lysine acetylation in cancer: prognostic biomarker and therapeutic target. Oncotarget, 7(34), 55789–55810.
Feng, Q., Mickolajczyk, K. J., Chen, G.-Y., & Hancock, W. O. (2018). Motor Reattachment Kinetics Play a Dominant Role in Multimotor-Driven Cargo Transport. Biophysical Journal, 114(2), 400–409.
Vu, H. T., Chakrabarti, S., Hinczewski, M., & Thirumalai, D. (2016). Discrete Step Sizes of Molecular Motors Lead to Bimodal Non-Gaussian Velocity Distributions under Force. Physical Review Letters, 117(7), 078101.
van Haren, J., Charafeddine, R. A., Ettinger, A., Wang, H., Hahn, K. M., & Wittmann, T. (2018). Local control of intracellular microtubule dynamics by EB1 photodissociation. Nature Cell Biology.
Bugiel, M., Mitra, A., Girardo, S., Diez, S., & Schäffer, E. (2018). Measuring Microtubule Supertwist and Defects by Three-Dimensional-Force-Clamp Tracking of Single Kinesin-1 Motors. Nano Letters, 18(2), 1290–1295.
Bollinger, J. A., & Stevens, M. J. (2018). Catastrophic depolymerization of microtubules driven by subunit shape change. Soft Matter.
Herzog, W. (2018). The multiple roles of titin in muscle contraction and force production. Biophysical Reviews.
Hemmat, M., Castle, B. T., & Odde, D. J. (2018). Microtubule dynamics: moving toward a multi-scale approach. Current Opinion in Cell Biology, 50, 8–13.
Paz, J., & Lüders, J. (2017). Microtubule-Organizing Centers: Towards a Minimal Parts List. Trends in Cell Biology, 28(3), 176–187.
Ryan, J. M., & Nebenführ, A. (2018). Update on Myosin Motors: Molecular Mechanisms and Physiological Functions. Plant Physiology, 176(1), 119–127.
Mead, A. F., Osinalde, N., Ørtenblad, N., Nielsen, J., Brewer, J., Vellema, M., … Elemans, C. P. (2017). Fundamental constraints in synchronous muscle limit superfast motor control in vertebrates. ELife, 6.
Singh, S. K., Pandey, H., Al-Bassam, J., & Gheber, L. (2018). Bidirectional motility of kinesin-5 motor proteins: structural determinants, cumulative functions and physiological roles. Cellular and Molecular Life Sciences.
Tan, R., Foster, P. J., Needleman, D. J., & McKenney, R. J. (2018). Cooperative Accumulation of Dynein-Dynactin at Microtubule Minus-Ends Drives Microtubule Network Reorganization. Developmental Cell, 44(2), 233–247.e4.
Hemmat, M., Castle, B. T., & Odde, D. J. (2018). Microtubule dynamics: moving toward a multi-scale approach. Current Opinion in Cell Biology, 50, 8–13.
Yue, Y., Blasius, T. L., Zhang, S., Jariwala, S., Walker, B., Grant, B. J., … Verhey, K. J. (2018). Altered chemomechanical coupling causes impaired motility of the kinesin-4 motors KIF27 and KIF7. The Journal of Cell Biology, jcb.201708179.
McIntosh, B. B., Pyrpassopoulos, S., Holzbaur, E. L. F., & Ostap, E. M. (2018). Opposing Kinesin and Myosin-I Motors Drive Membrane Deformation and Tubulation along Engineered Cytoskeletal Networks. Current Biology.
Allan, V. J. (2016). A tale of two α‐tubulin tails. The EMBO Journal, 35(11), 1155–1157.
Cao, Y.-N., Zheng, L.-L., Wang, D., Liang, X.-X., Gao, F., & Zhou, X.-L. (2018). Recent advances in microtubule-stabilizing agents. European Journal of Medicinal Chemistry, 143, 806–828.
Strzyz, P. (2016). Post-translational modifications: Extension of the tubulin code. Nature Reviews Molecular Cell Biology, 17(10), 609–609.
Janke, C., & Montagnac, G. (2017). Causes and Consequences of Microtubule Acetylation. Current Biology, 27(23), R1287–R1292.
Ruhnow, F., Kloβ, L., & Diez, S. (2017). Challenges in Estimating the Motility Parameters of Single Processive Motor Proteins. Biophysical Journal, 113(11), 2433–2443.
Rao, A. N., & Baas, P. W. (2017). Polarity Sorting of Microtubules in the Axon. Trends in Neurosciences.
Mead, A. F., Osinalde, N., Ørtenblad, N., Nielsen, J., Brewer, J., Vellema, M., … Elemans, C. P. (2017). Fundamental constraints in synchronous muscle limit superfast motor control in vertebrates. ELife, 6.
Ryan, J. M., & Nebenführ, A. (2018). Update on Myosin Motors: Molecular Mechanisms and Physiological Functions. Plant Physiology, 176(1), 119–127.
Mueller, C., Graindorge, A., & Soldati-Favre, D. (2017). Functions of myosin motors tailored for parasitism. Current Opinion in Microbiology, 40, 113–122.
Rai, P., Kumar, M., Sharma, G., Barak, P., Das, S., Kamat, S. S., & Mallik, R. (2017). Kinesin-dependent mechanism for controlling triglyceride secretion from the liver. Proceedings of the National Academy of Sciences, 114(49), 12958–12963.
Lewis, T. R., Zareba, M., Link, B. A., & Besharse, J. C. (2018). Cone myoid elongation involves unidirectional microtubule movement mediated by dynein-1. Molecular Biology of the Cell, 29(2), 180–190.
Semenova, I., Gupta, D., Usui, T., Hayakawa, I., Cowan, A., & Rodionov, V. (2017). Stimulation of microtubule-based transport by nucleation of microtubules on pigment granules. Molecular Biology of the Cell, 28(11), 1418–1425.
Stam, S., Freedman, S. L., Banerjee, S., Weirich, K. L., Dinner, A. R., & Gardel, M. L. (2017). Filament rigidity and connectivity tune the deformation modes of active biopolymer networks. Proceedings of the National Academy of Sciences, 114(47), E10037–E10045.
Liu, N., Pidaparti, R., & Wang, X. (2017). Effect of amino acid mutations on intra-dimer tubulin-tubulin binding strength of microtubules. Integrative Biology : Quantitative Biosciences from Nano to Macro, 9(12), 925–933.
Favaro, M. T. de P., Unzueta, U., de Cabo, M., Villaverde, A., Ferrer-Miralles, N., & Azzoni, A. R. (2018). Intracellular trafficking of a dynein-based nanoparticle designed for gene delivery. European Journal of Pharmaceutical Sciences, 112, 71–78.
Fallesen, T., Roostalu, J., Duellberg, C., Pruessner, G., & Surrey, T. (2017). Ensembles of Bidirectional Kinesin Cin8 Produce Additive Forces in Both Directions of Movement. Biophysical Journal, 113(9), 2055–2067.
Kitajima, T. S. (2018). Mechanisms of kinetochore-microtubule attachment errors in mammalian oocytes. Development, Growth & Differentiation.
Lam, A. T.-C., Tsitkov, S., Zhang, Y., & Hess, H. (2018). Reversibly bound kinesin-1 motor proteins propelling microtubules demonstrate dynamic recruitment of active building blocks. Nano Letters, acs.nanolett.7b05361.
Kumbhar, B. V., Borogaon, A., Panda, D., & Kunwar, A. (2016). Exploring the origin of differential binding affinities of human tubulin isotypes αβII, αβIII and αβIV for DAMA-colchicine using homology modelling, molecular docking and molecular dynamics simulations. PLoS ONE, 11(5).
Takshak, A., & Kunwar, A. (2016). Importance of anisotropy in detachment rates for force production and cargo transport by a team of motor proteins. Protein Science, 25(5).
Amrutha, A. S., Kumar, K. R. S., Kikukawa, T., & Tamaoki, N. (2017). Targeted Activation of Molecular Transportation by Visible Light. ACS Nano, acsnano.7b06059.
Hwang, W., Lang, M., & Karplus, M. (2017). Kinesin motility driven by subdomain dynamics. ELife, 6.
Omabegho, T., Gurel, P. S., Cheng, C. Y., Kim, L. Y., Ruijgrok, P. V., Das, R., … Bryant, Z. (2017). Controllable molecular motors engineered from myosin and RNA. Nature Nanotechnology.
Khataee, H., Naseri, S., Zhong, Y., & Liew, A. W.-C. (2017). Unbinding of Kinesin from Microtubule in the Strongly Bound States Enhances under Assisting Forces. Molecular Informatics.
Schneider, I., & Lénárt, P. (2017). Chromosome Segregation: Is the Spindle All About Microtubules? Current Biology, 27(21), R1168–R1170.
Pollard, T. D. (2017). Nine unanswered questions about cytokinesis. The Journal of Cell Biology, 216(10), 3007–3016.
Abraham, Z., Hawley, E., Hayosh, D., Webster-Wood, V., & Akkus, O. (2017). Kinesin and dynein mechanics: measurement methods and research applications. Journal of Biomechanical Engineering.
Siddiqui, N., & Straube, A. (2017). Intracellular cargo transport by kinesin-3 motors. Biochemistry (Moscow), 82(7), 803–815.
Reinemann, D. N., Sturgill, E. G., Das, D. K., Degen, M. S., Vörös, Z., Hwang, W., … Lang, M. J. (2017). Collective Force Regulation in Anti-parallel Microtubule Gliding by Dimeric Kif15 Kinesin Motors. Current Biology, 27(18), 2810–2820.e6.
Ishikawa, H., & Marshall, W. F. (2017). Testing the time-of-flight model for flagellar length sensing. Molecular Biology of the Cell, mbc.E17-06-0384.
De Rossi, M. C., Wetzler, D. E., Benseñor, L., De Rossi, M. E., Sued, M., Rodríguez, D., … Levi, V. (2017). Mechanical coupling of microtubule-dependent motor teams during peroxisome transport in Drosophila S2 cells. Biochimica et Biophysica Acta (BBA) - General Subjects, 1861(12), 3178–3189.
Howard, J., & Garzon-Coral, C. (2017). Physical Limits on the Precision of Mitotic Spindle Positioning by Microtubule Pushing forces. BioEssays, 39(11), 1700122.
Wang, Q., Diehl, M. R., Jana, B., Cheung, M. S., Kolomeisky, A. B., & Onuchic, J. N. (2017). Molecular origin of the weak susceptibility of kinesin velocity to loads and its relation to the collective behavior of kinesins. Proceedings of the National Academy of Sciences, 114(41), 201710328.
Prevo, B., Scholey, J. M., & Peterman, E. J. G. (2017). Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. The FEBS Journal, 284(18), 2905–2931.
Craig, E. M., Yeung, H. T., Rao, A. N., & Baas, P. W. (2017). Polarity Sorting of Axonal Microtubules: A Computational Study. Molecular Biology of the Cell, mbc.E17-06-0380.
Balabanian, L., Berger, C. L., & Hendricks, A. G. (2017). Acetylated Microtubules Are Preferentially Bundled Leading to Enhanced Kinesin-1 Motility. Biophysical Journal, 113(7), 1551–1560.
Main menu