| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | What_molecule_was_analyzed_for_this_data? | What_technique_is_used_for_this_data? | What_molecular_aspect_was_attempting_to_be_identified_with_this_data? | Is_there_a_speciality_target_you_are_analyzing? | What_type_of_data_stage_or_info_are_you_looking_for_info_on? | What_preferences_do_you_have_for_programming_interfaces? | Do_you_need_a_cloud_based_tool? | description | tutorials_and_tool_links | ||||||||||||||||
2 | DNA | ATAC-seq | Chromatin accessibility | None | Concepts | command line | y | ATAC-seq is a method for determining chromatin accessibility across the genome, and the guidelines provide recommendations for experimental design, sequencing, and data analysis. | https://informatics.fas.harvard.edu/atac-seq-guidelines.html | ||||||||||||||||
3 | DNA | DNA | Chromatin accessibility | None | Raw | command line | what | ATAC-seq is a method for determining chromatin accessibility across the genome, and the guidelines provide recommendations for experimental design, sequencing, and data analysis. | https://informatics.fas.harvard.edu/atac-seq-guidelines.html | ||||||||||||||||
4 | DNA | ATAC-seq | Chromatin accessibility | None | Concepts | None | None | This is a slide deck that explains the concepts behind ATAC-seq | https://training.galaxyproject.org/training-material/topics/epigenetics/tutorials/atac-seq/slides.html#1 | ||||||||||||||||
5 | DNA | ATAC-seq | Chromatin accessibility | None | Raw | None | None | This is a slide deck that explains the concepts behind ATAC-seq | https://training.galaxyproject.org/training-material/topics/epigenetics/tutorials/atac-seq/tutorial.html | ||||||||||||||||
6 | DNA | Bisulfite sequencing | Methylation | None | Concepts | caper | None | This standard ENCODE ATAC-seq pipeline shows how ATAC-seq data can be analyzed | https://github.com/ENCODE-DCC/atac-seq-pipeline | ||||||||||||||||
7 | DNA | Bisulfite sequencing | Methylation | None | Raw | mint | None | The mint pipeline analyzes single-end reads coming from sequencing assays measuring DNA methylation and hydroxymethylation. The pipeline analyzes reads from both bisulfite-converted assays such as WGBS and RRBS, and from pulldown assays such as MeDIP-seq, hMeDIP-seq, and hMeSeal. Moreover, with data measuring both 5-methylcytosine (5mc) and 5-hydroxymethylcytosine (5hmc), the mint pipeline integrates the two data types to classify genomic regions of 5mc, 5hmc, a mixture, or neither. | https://github.com/sartorlab/mint/blob/master/README.md | ||||||||||||||||
8 | DNA | Bisulfite sequencing | Methylation | None | Raw | galaxy | None | This pipeline in Galaxy shows how methylation sequence data can be analyzed using the Galaxy GUI cloud. | https://training.galaxyproject.org/training-material/topics/epigenetics/tutorials/methylation-seq/tutorial.html | ||||||||||||||||
9 | RNA | Bulk RNA-seq | Gene expression | Bulk | Concepts | none | None | These slides describe the concept behind bulk RNA-seq data | https://drive.google.com/file/d/1A9gNDIuD_c3ppF2k6vY3b0VgSKZjchzp/view | ||||||||||||||||
10 | RNA | Bulk RNA-seq | Gene expression | Bulk | Raw | R | None | This GitHub training RMarkdown based files show how one can analyze RNA-seq data using R | https://github.com/AlexsLemonade/training-modules/blob/master/RNA-seq/README.md | ||||||||||||||||
11 | RNA | Bulk RNA-seq | Gene expression | Bulk | Raw | R | None | This Data Carpentries lesson walks through the steps that need to take place for analyzing RNA-seq data | https://scienceparkstudygroup.github.io/rna-seq-lesson/aio/index.html | ||||||||||||||||
12 | RNA | Bulk RNA-seq | Gene expression | Bulk | Concepts | galaxy | y | These Galaxy slides describe transcriptomics conceptual | https://training.galaxyproject.org/training-material/topics/transcriptomics/slides/introduction.html#1 | ||||||||||||||||
13 | RNA | Bulk RNA-seq | Gene expression | Bulk | Summary reads | galay | y | These Galaxy slides describe how RNA-seq counts can be converted to gene-level data | https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-counts-to-genes/tutorial.html | ||||||||||||||||
14 | RNA | Bulk RNA-seq | Gene expression | Bulk | Raw | galaxy | y | These Galaxy slides describe how RNA-seq reads can be converted to counts | https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-reads-to-counts/tutorial.html | ||||||||||||||||
15 | RNA | Bulk RNA-seq | Gene expression | None | None | R | n | The EdgeR package helps downstream RNA-seq be analyzed. Differential expression and count normalization are things that EdgeR can do. | https://www.bioconductor.org/packages/devel/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf | ||||||||||||||||
16 | DNA | Chip-seq | DNA-protein binding | None | Raw | R | n | This book describes how to analyze ChiP-seq data. | http://bioconductor.org/books/3.14/csawBook/ | ||||||||||||||||
17 | DNA | Chip-seq | DNA-protein binding | None | Raw | command line | n | This GitHub repository has files related to a workshop that describes how ChIP-seq data can be processed. | https://nbisweden.github.io/workshop-archive/workshop-ChIP-seq/2018-11-07/labs/lab-processing.html | ||||||||||||||||
18 | DNA | Chip-seq | DNA-protein binding | None | Concepts | command line | n | This webpage describes considerations one should think of when analyzing ChIP-seq data | https://learn.gencore.bio.nyu.edu/chipseq-analysis/chip-seq-considerations/ | ||||||||||||||||
19 | DNA | Chip-seq or ATAC-seq | DNA-protein binding | None | Concepts | none | n | These slides describe epigenomics assays: ChIP-seq and ATAC-seq | https://physiology.med.cornell.edu/faculty/skrabanek/lab/angsd/lecture_notes/13_lecture.pdf | ||||||||||||||||
20 | DNA | DNA-seq | Base sequence | WGS/WXS | Concepts | command line | n | The GATK4 tool set allows you to process whole genome sequencing | https://gatk.broadinstitute.org/hc/en-us/articles/360036194592-Getting-started-with-GATK4 | ||||||||||||||||
21 | DNA | DNA-seq | Base sequence | WGS/WXS | Concepts | command line | None | This webpage also discusses how to use the GATK4 variant calling pipeline. | https://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4/ | ||||||||||||||||
22 | DNA | DNA-seq | Base sequence | None | Raw | command line | None | CNVnator is a tool for CNV discovery and genotyping from depth-of-coverage by mapped reads | https://github.com/abyzovlab/CNVnator | ||||||||||||||||
23 | DNA | DNA-seq | Base sequence | WGS/WXS | Concepts | command line | n | This Galaxy training material discusses sequence analysis on a conceptual level. | https://training.galaxyproject.org/training-material/topics/sequence-analysis/ | ||||||||||||||||
24 | DNA | DNA-seq | Base sequence | WGS/WXS | Concepts | galaxy | y | This Galaxy training material discusses variant analysis on a conceptual level. | https://training.galaxyproject.org/training-material/topics/variant-analysis/ | ||||||||||||||||
25 | DNA | DNA-seq | Base sequence | WGS/WXS | Concepts | command line | n | This webpage describes bioinformatics workflow for Whole Genome Sequencing | https://www.cd-genomics.com/bioinformatics-workflow-for-whole-genome-sequencing.html | ||||||||||||||||
26 | DNA | DNA-seq | Base sequence | WGS/WXS | Concepts | GensearchNGS | y | DNAseq Workflow in a Diagnostic Context and an Example of a User Friendly Implementation | https://www.hindawi.com/journals/bmri/2015/403497/ | ||||||||||||||||
27 | DNA | DNA-seq | Base sequence | WGS/WXS | Concepts | FastQC | n | A description of what a standard DNA-sequencing entails at each step | https://www.kolabtree.com/blog/a-step-by-step-guide-to-dna-sequencing-data-analysis/ | ||||||||||||||||
28 | DNA | DNA-seq | Base sequence | WGS/WXS | Concepts | many | None | From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243306/pdf/nihms531590.pdf | ||||||||||||||||
29 | RNA | Gene expression array | Gene expression | None | Summary stats | R | None | This training material from Alex's Lemonade Stand Foundation describes how to process microarray data from soup to nuts | https://alexslemonade.github.io/refinebio-examples/02-microarray/00-intro-to-microarray.html | ||||||||||||||||
30 | RNA | Gene expression array | Gene expression | Bulk | Raw | R | None | The limma package helps analyze gene expression microarray data | https://www.bioconductor.org/packages/devel/bioc/vignettes/limma/inst/doc/usersguide.pdf | ||||||||||||||||
31 | RNA | Gene expression array | Gene expression | None | Raw | R | None | This bioconductor tutorial shows how to normalize and process microarray data. | https://www.bioconductor.org/packages/release/workflows/vignettes/maEndToEnd/inst/doc/MA-Workflow.html | ||||||||||||||||
32 | DNA | Hi-C | 3D structure | None | Raw | many | y | This Galaxy tutorial shows how to analyze HiC data | https://training.galaxyproject.org/training-material/topics/epigenetics/tutorials/hicexplorer/tutorial.html | ||||||||||||||||
33 | DNA | Hi-C | 3D structure | None | None | many | y | This Galaxy tutorial shows how to analyze HiC data | https://training.galaxyproject.org/training-material/topics/epigenetics/tutorials/hicexplorer/tutorial.html | ||||||||||||||||
34 | DNA | Hi-C | 3D structure | None | Concepts | command line | None | These slides describe the concepts behind HiC data | https://qcb.ucla.edu/wp-content/uploads/sites/14/2017/02/Workshop-10-HiC-D1.pdf | ||||||||||||||||
35 | DNA | Hi-C | 3D structure | None | Raw | command line | None | The snakePipes HiC workflow allows users to process their HiC data from raw fastq files to corrected HiC matrices and TADs. | https://snakepipes.readthedocs.io/en/latest/content/workflows/HiC.html | ||||||||||||||||
36 | DNA | Methylation chip | Methylation | None | Raw | command line | None | This Galaxy tutorial shows how to analyze epigenetic data | https://training.galaxyproject.org/training-material/topics/epigenetics/tutorials/ewas-suite/tutorial.html | ||||||||||||||||
37 | DNA | Methylation chip | Methylation | None | Summary reads | R | None | This bioconductor tutorial shows how to normalize and process methylation array data | https://www.bioconductor.org/packages/release/workflows/vignettes/methylationArrayAnalysis/inst/doc/methylationArrayAnalysis.html | ||||||||||||||||
38 | Protein | proteomics mass spec | Mass spec | none | Raw | many | n | This Galaxy tutorial shows how to analyze proteomics data | https://training.galaxyproject.org/training-material/topics/proteomics/ | ||||||||||||||||
39 | Protein | proteomics mass spec | Mass spec | none | Concepts | many | n | This set of Galaxy training slides show information about proteomic data | https://training.galaxyproject.org/training-material/topics/proteomics/slides/introduction.html#1 | ||||||||||||||||
40 | Protein | proteomics mass spec | Mass spec | none | Raw | R | None | This Bioconductor pacakge shows how to analyze proteomic data | https://www.bioconductor.org/packages/release/workflows/vignettes/proteomics/inst/doc/proteomics.html | ||||||||||||||||
41 | RNA | RNA-seq | Gene expression | Bulk | Summary reads | R | None | This training material from Alex's Lemonade Stand Foundation describes how to process RNA-seq data from soup to nuts | https://alexslemonade.github.io/refinebio-examples/03-rnaseq/00-intro-to-rnaseq.html | ||||||||||||||||
42 | RNA | RNA-seq | Gene expression | micro-RNA | Summary reads | R | None | Evaluate the performance of depth normalization methods in microRNA sequencing. | https://github.com/LXQin/PRECISION.seq | ||||||||||||||||
43 | RNA | RNA-seq | Gene expression | micro-RNA | Summary reads | R | None | DANA is an approach for assessing the performance of normalization for microRNA-Seq data based on biology-motivated and data-driven metrics. | https://lxqin.github.io/DANA/ | ||||||||||||||||
44 | RNA | RNA-seq | Gene expression | Bulk | Summary reads | R | None | This bioconductor tutorial describes | https://www.bioconductor.org/packages/devel/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html | ||||||||||||||||
45 | RNA | RNA-seq | Gene expression | Bulk | Summary reads | R | None | A guide to creating design matrices for gene expression experiments | https://www.bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/designmatrices.html | ||||||||||||||||
46 | RNA | RNA-seq | Gene expression | Bulk | Raw | R | None | Swimming downstream: statistical analysis of differential transcript usage following Salmon quantification | https://www.bioconductor.org/packages/release/workflows/vignettes/rnaseqDTU/inst/doc/rnaseqDTU.html | ||||||||||||||||
47 | RNA | RNA-seq | Gene expression | Bulk | Summary reads | R | None | This bioconductor tutorial shows how to use EdgeR to perform differential expression analysis on microarray data | https://www.bioconductor.org/packages/release/workflows/vignettes/RnaSeqGeneEdgeRQL/inst/doc/edgeRQL.html | ||||||||||||||||
48 | RNA | RNA-seq | Gene expression | Bulk | Raw | none | None | This webpage discusses how to properly handle bulk RNA-seq data | https://rnaseq.uoregon.edu/ | ||||||||||||||||
49 | RNA | RNA-seq | Gene expression | Bulk | Concepts | none | None | This webpage describes the underlying principles behind RNA-seq data | https://geneticeducation.co.in/rna-sequencing-principle-steps-methods-and-applications/ | ||||||||||||||||
50 | RNA | RNA-seq | Gene expression | None | None | None | None | WebMeV application is useful for data visualization | https://web-mev.github.io/quickstart/ | ||||||||||||||||
51 | RNA | RNA-seq | Gene expression | Single-cell | Raw | R | None | This bioconductor tutorial shows how to use R to analyze single cell RNA-seq data | http://bioconductor.org/books/3.15/OSCA.intro/ | ||||||||||||||||
52 | RNA | RNA-seq | Gene expression | Single-cell | Raw | R | None | This bioconductor tutorial shows advanced techniques for analyzing single cell RNA-seq data | http://bioconductor.org/books/3.15/OSCA.advanced/ | ||||||||||||||||
53 | RNA | RNA-seq | Gene expression | Single-cell | Raw | Python | None | SCGV is an interactive graphical tool for single-cell genomics data, with emphasis on single-cell genomics of cancer | https://github.com/KrasnitzLab/SCGV | ||||||||||||||||
54 | RNA | Single-cell RNA-seq | Gene expression | Single-cell | Concepts | none | None | This set of slides from Alex's Lemonade Stand Foundation describe the concepts behind single-cell RNA-seq data | https://drive.google.com/file/d/186niFprBKICNsF53WpIhKbiIMLawu-ms/view | ||||||||||||||||
55 | RNA | Single-cell RNA-seq | Gene expression | Single-cell | Raw | R | None | This training material from Alex's Lemonade Stand Foundation describes how to process single cell RNA-seq data from soup to nuts | https://github.com/AlexsLemonade/training-modules/blob/master/scRNA-seq/README.md | ||||||||||||||||
56 | RNA | Single-cell RNA-seq | Gene expression | Single-cell | Raw | R | None | This training material from NYU shows how to analyze single cell RNA0-seq data | https://learn.gencore.bio.nyu.edu/single-cell-rnaseq/prerequisites/ | ||||||||||||||||
57 | RNA | Single-cell RNA-seq | Gene expression | Single-cell | Raw | command line | None | These documentation guides from Salmon show how to analyze single-cell data using the Alevin package. | https://salmon.readthedocs.io/en/latest/alevin.html | ||||||||||||||||
58 | RNA | Single-cell RNA-seq | Gene expression | Single-cell | Concepts | none | None | This Galaxy tutorial describes the concepts underlying single-cell RNA-seq data | https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/scrna-intro/slides.html#1 | ||||||||||||||||
59 | RNA | Single-cell RNA-seq | Gene expression | Single-cell | Raw | none | None | This Galaxy tutorial shows the basics of analyzing single-cell RNA-seq data | https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/scrna-preprocessing/tutorial.html | ||||||||||||||||
60 | RNA | Single-cell RNA-seq | Gene expression | Single-cell | Raw | R | None | This book walks through the details of using single-cell RNA-seq data | https://www.singlecellcourse.org/ | ||||||||||||||||
61 | RNA | Single-cell RNA-seq | Gene expression | Single-cell | Summary reads | R | None | Seurat is a useful R package for downstream analysis of single-cell RNA-seq data | https://satijalab.org/seurat/articles/get_started.html | ||||||||||||||||
62 | RNA | Single-cell RNA-seq | Gene expression | Single-cell | Summary reads | R | None | scater is a useful R package for visualization of single-cell RNA-seq data | https://bioconductor.org/packages/devel/bioc/vignettes/scater/inst/doc/overview.html | ||||||||||||||||
63 | RNA | Single-cell RNA-seq | Gene expression | Single-cell | Summary reads | R | None | scran is a useful R package for normalization of single-cell RNA-seq data | https://bioconductor.org/packages/devel/bioc/vignettes/scran/inst/doc/scran.html | ||||||||||||||||
64 | |||||||||||||||||||||||||
65 | |||||||||||||||||||||||||
66 | |||||||||||||||||||||||||
67 | |||||||||||||||||||||||||
68 | |||||||||||||||||||||||||
69 | |||||||||||||||||||||||||
70 | |||||||||||||||||||||||||
71 | |||||||||||||||||||||||||
72 | |||||||||||||||||||||||||
73 | |||||||||||||||||||||||||
74 | |||||||||||||||||||||||||
75 | |||||||||||||||||||||||||
76 | |||||||||||||||||||||||||
77 | |||||||||||||||||||||||||
78 | |||||||||||||||||||||||||
79 | |||||||||||||||||||||||||
80 | |||||||||||||||||||||||||
81 | |||||||||||||||||||||||||
82 | |||||||||||||||||||||||||
83 | |||||||||||||||||||||||||
84 | |||||||||||||||||||||||||
85 | |||||||||||||||||||||||||
86 | |||||||||||||||||||||||||
87 | |||||||||||||||||||||||||
88 | |||||||||||||||||||||||||
89 | |||||||||||||||||||||||||
90 | |||||||||||||||||||||||||
91 | |||||||||||||||||||||||||
92 | |||||||||||||||||||||||||
93 | |||||||||||||||||||||||||
94 | |||||||||||||||||||||||||
95 | |||||||||||||||||||||||||
96 | |||||||||||||||||||||||||
97 | |||||||||||||||||||||||||
98 | |||||||||||||||||||||||||
99 | |||||||||||||||||||||||||
100 |