Photobiomodulation (PBM) / Low level laser therapy (LLLT) / red/NIR phototherapy studies - a comprehensive database
 Share
The version of the browser you are using is no longer supported. Please upgrade to a supported browser.Dismiss

View only
 
 
ABCDEFGHIJKLMNOPQRSTUVWXYZAAABACADAEAFAGAHAIAJAKAL
1
Database team: Vladimir Heiskanen (FI), Jolien Robijns (BE), Hannah Serrage (UK) and Reem Hanna (UK/IT). Correspondence: valtsu.heiskanen@gmail.com Short link to this database: www.bitly.com/PBM-database
2
CategoryFirst authorCountryYearJournalTitleStudy typeNotesλ
nm
Φ
mW
E
W/cm2
Q
J
H
J/cm2
At
sec
NResults: positive / unclear/modest / negative ↑ ↓ →LinkAdditional infoCommentReplyAdditional info (2)
3
📷Adipose tissueInflammationYoshimuraBrazil
(São Paulo)
2016J BiophotonicsPhotobiomodulation reduces abdominal adipose tissue inflammatory infiltrate of diet-induced obese and hyperglycemic mice.MouseLED phototherapy

Anti-inflammatory
843600.019185.73.14
cm2
3006"Non-irradiated control animals display inflammatory areas almost five times greater than the treated group (p < 0.001). This result on inflammatory infiltrate may have caused impacts on the significant lower blood glucose level from irradiated animals (p = 0.04), twenty-four hours after the last irradiation session."PubMed
4
Adipose tissueFree fatty acids (FFA)GongChina
(Guangzhou)
2019Cell SignalPhotobiomodulation therapy decreases free fatty acid generation and release in adipocytes to ameliorate insulin resistance in type 2 diabetes.RatHFD mice
Diabetic mice

Insulin-resistant 3T3-L1 adipocytes and WAT
635"The current results indicated that PBMT inhibited FFA generation and release in insulin-resistant adipocytes and reduced plasma FFA levels in diabetic db/db mice and HFD-fed mice. Therefore, PBMT might ameliorate whole-body insulin resistance in diabetic mice.

GTT analysis indicated that glucose tolerance was markedly enhanced in db/db mice after PBMT (Fig. 5D, E). Meanwhile, insulin sensitivity was also elevated in laser-treated db/db mice (Fig. 5F, G). In HFD-fed mice, glucose tolerance and insulin sensitivity were also improved after PBMT (Fig. 5H–K). These results indicate that PBMT could improve whole-body insulin resistance in diabetic mice"

"PBMT promoted mitochondrial reactive oxygen species (ROS) generation, which inhibited phosphatase and tensin homologue (PTEN) and promoted protein kinase B (AKT) activation. Photoactivation of AKT inhibited the transcriptional activity of Forkhead box transcription factor O1 (FoxO1), reducing expression of lipolytic enzymes and FFA generation and release. Eliminating ROS elimination or inhibiting AKT blocked the effects of the laser therapy in vivo and in vitro."

"Taken together, PBMT suppresses FFA generation and release in insulin-resistant adipocytes, contributing to improvement of insulin resistance in mouse models of type 2 diabetes."

PubMed
5
Adipose tissueGene expressionMafraBrazil
(Mogi das Cruzes)
2019
epub
Photobiomodul Photomed Laser Surg904 nm Low-Level Laser Irradiation Decreases Expression of Catabolism-Related Genes in White Adipose Tissue of Wistar Rats: Possible Roles of Laser on Metabolism.Cholesterol levels

Triglyceride levels
904"We demonstrated that the low-level laser irradiation was able to increase the feed intake of the animals and the relative mass of the adipose tissue in the CTL (L) group compared with CTL.

Laser treatment also increases serum triglycerides [CTL = 46.99 ± 5.87; CTL (L) = 57.46 ± 14.38; CAF = 43.98 ± 5.17; and CAF (L) = 56.9 ± 6.12; p = 0.007] and total cholesterol (CTL = 70.62 ± 6.80; CTL (L) = 79.41 ± 13.07; CAF = 71.01 ± 5.52; and CAF (L) = 79.23 ± 6.881; p = 0.003)."

"Laser PBM decreased gene expression of the studied genes in the adipose tissue, indicating that PBM is able to block the catabolic responses of this tissue. Interestingly, the CAF (L) and CAF animals presented the same CLT (L) phenotype, however, without increasing the feed intake and the relative weight of the adipose tissue. The description of these phenomena opens a new perspective for the study of the action of low-level laser in adipose tissue."
PubMed
6
Adipose tissueInsulin signallingSilvaBrazil
(Diamantina)
2017
epub
Lasers Med SciInfrared photobiomodulation (PBM) therapy improves glucose metabolism and intracellular insulin pathway in adipose tissue of high-fat fed mice.Mouse780100.2502

(0.4
/p)
100.04
cm2
spot
200

(5p)
20"PBM therapy improved glucose tolerance and phosphorylation of Akt (Ser473) and reversed the HFD-induced reduction of GLUT4 content and phosphorylation of AS160 (Ser588). Also, PBM therapy reversed the increased area of epididymal and mesenteric adipocytes.

"The total serum cholesterol was not affected by diet (diet main effect p = 0.39), but there was a PBM main effect (p = 0.047). Post hoc revealed that PBM reduced total serum cholesterol (p = 0.043), regardless of diet treatment (Fig. 3b)."

"In the present study, PBM therapy did not alter HFD-induced increase in fasting hyperglycemia, hyperinsulinemia, and insulin resistance, as assessed by HOMA-IR. On the other hand, PBM therapy improved glucose intolerance in HFD-fed mice."

"Also, PBM therapy reversed the increased area of epididymal and mesenteric adipocytes."

The results showed that chronic PBM therapy improved parameters related to obesity and insulin resistance in HFD-induced obesity in mice."
PubMed
7
Adipose tissueLipase activityMafraBrazil
(Mogi das Cruzes)
2019Photobiomodul Photomed Laser SurgLaser Photobiomodulation 904 nm Promotes Inhibition of Hormone-Sensitive Lipase Activity in 3T3-L1 Adipocytes Differentiated Cells.In vitro3T3-L1 cells90460"The response of laser photobiomodulation was able to trigger an inhibition of HSL activity"PubMed
8
Adipose tissueLipoplastyBrownUSA
(Dallas, TX)
2004Plast Reconstr SurgEffect of low-level laser therapy on abdominal adipocytes before lipoplasty procedures.Human
(+ Pig)
(+ in vitro)
63510
(?)
14.4

?
720"Recently, low-level laser therapy was reported to "liquefy" or release stored fat in adipocytes by the opening of specialized yet not identified cell membrane-associated pores after a brief treatment."

"No histologic tissue changes or specifically in adipocyte structure were observed at any depth with the longest low-level laser therapy (60 minutes with superwet fluid)."

"These data do not support the belief that low-level laser therapy treatment before lipoplasty procedures disrupts tissue adipocyte structure."
PubMed
9
Adipose tissueLipoplastyNeira & Ortiz-NeiraColombia
(Cali)
2002Aesthet Surg JLow-level laser-assisted liposculpture: clinical report of 700 cases.Human635"Excellent aesthetic results, including an improved silhouette contour, smooth abdominal surface, and good skin retraction, were obtained in 95% of cases. Postoperative recovery was rapid, and complications were minimal."PubMed
10
Adipose tissueLipoplastyNeiraColombia
(Cali)
2002Plast Reconstr SurgFat liquefaction: effect of low-level laser energy on adipose tissue.In vitroHuman adipose tissue samples635101.2
2.4
3.6
(120)
240
360
"The low-level laser energy affected the adipose cell by causing a transitory pore in the cell membrane to open, which permitted the fat content to go from inside to outside the cell. The cells in the interstitial space and the capillaries remained intact. Low-level laser-assisted lipoplasty has a significant impact on the procedural implementation of lipoplasty techniques."

Comment: These results were unsupported by Brown et al. paper published in 2004.
PubMed
11
Adipose tissueMedradoBrazil
(Salvador, Bahia)
2006Lasers Med SciAction of low-level laser therapy on living fatty tissue of rats.Rat6709--4
8
12
16
-31
62
124
248
"Low-level laser rays cause brown adipose fat droplets to coalesce and fuse. Additionally, they stimulated proliferation and congestion of capillaries in the extracellular matrix."

Comment: Parameters were poorly reported: spot area (cm2) and radiant energy (J) were not mentioned.
PubMed
12
AgingEditorialsMitrofanis & JefferyAustralia & UK2018Aging (Albany NY)Does photobiomodulation influence ageing?Editorial"In conclusion, photobiomodulation has been shown to alter the course of ageing in the central nervous system, by improving the survival and function of neurons and reducing gliosis and inflammation. These results in the laboratory are ripe for translation to the clinic, to determine whether this treatment effectively slows ageing in humans. Some of the key advantages of photobiomodulation therapy relate to its economy and safety, as it can be delivered with commercially available light emitting devices at energies well within the human safety range. Moreover, a major strength of this therapy is that it can offer a potential clinical application where there is little alternative available."PubMed
13
Alcohol addictionZalewska-Kaszubska & ObzejtaPoland
(Lodz)
2004Lasers Med SciUse of low-energy laser as adjunct treatment of alcohol addiction.Human514
+
633
100
+
25
---0.05

0.2
cm2
50
(5p)
300
20"Improvement in BDI-FS and increase in, beta-endorphin level were observed. These results suggest that laser therapy can be useful as an adjunct treatment for alcoholism."PubMed
14
BoneBone and stromal cellsParentiItaly
(Bologna)
2020Arch Biochem BiophysEvidence from systematic reviews on photobiomodulation of human bone and stromal cells: Where do we stand?Systematic review (in vitro)"Six reviews using explicit eligibility criteria and methods selected in order to minimize bias were included.

There was no compelling evidence on the cellular mechanisms of action or treatment parameters of photobiomodulation; compliance with quality assessment was poor.

A rigorous description of laser parameters (wavelength, power, beam spot size, power density, energy density, repetition rate, pulse duration or duty cycle, exposure duration, frequency of treatments, and total radiant energy), exposure conditions (methods to ensure a uniform irradiation and to avoid cross-irradiation, laser-cell culture surface distance, lid presence during irradiation) and cell-related characteristics (cell type or line, isolation and culture conditions, donor-related factors where applicable, tissue source, cell phenotype, cell density, number of cell passages in culture) should be included among eligibility criteria for study inclusion.

These methodological improvements will maximize the contribution of in vitro studies on the effects of photobiomodulation on human bone and stromal cells to evidence-based translational research."

"PBM is a highly promising strategy, but its effectiveness on the proliferation and differentiation of bone and stromal cells is still controversial and even SRs disagree in their conclusions. A high degree of heterogeneity was observed between the primary studies being combined in SRs together with the absence of quantitative analyses; these aspects make it impossible to conduct a meta-analysis. Compliance with the quality assessment of the currently available SRs is poor, with no compelling evidence on the cellular mechanisms of action or treatment parameters of PBM for clinical practice. Above all, SRs do not evaluate and take into account the quality of the primary studies when interpreting the results. These limitations make it difficult to provide strong evidence of the biostimulatory effect on different bone and stromal cells used in in vitro studies. "
PubMed
15
BoneBone graftsde Oliveira GonçalvesBrazil
(Bauru)
2016J Photochem Photobiol BEffects of low-level laser therapy on autogenous bone graft stabilized with a new heterologous fibrin sealant.Rat830300.25862.9
(4p)
60.116
cm2
96
(4p)
18
(?)
"In conclusion, low-level laser therapy stimulated bone regeneration and accelerated the process of integration of autogenous bone grafts."PubMed
16
BoneBone graftsValiatiBrazil
(Lages)
2012Int J Med SciEffect of low-level laser therapy on incorporation of block allografts.Rabbit83048"Deep-freeze-processed block allografts followed by LLLT showed incorporation at the graft-host interface, moderate bone remodeling, partial filling of osteocyte lacunae, less inflammatory infiltrate in the early postoperative period, and higher collagen deposition than the control group."PubMed
17
BoneBone marrowPyczekPoland
(Kraków)
1994Folia Biol (Krakow)Effect of low-energy laser power on the bone marrow of the rat.Rat6335"These indicated that AsGa laser light induced a decrease in bone marrow mastocytes and peripheral blood basophils with an increase in the number of eosinophils. An increase in mitotic activity in the bone marrow was observed in the exposed groups of animals. No significant changes in Hb, Ht, erythrocyte or reticulocyte levels in the peripheral blood were noted, nor was there an increase in megakaryocyte emperipolesis."PubMed
18
BoneBone metabolismBomfimBrazil
(São Paulo)
2018Acta Cir Bras.Influence of low-level laser irradiation on osteocalcin protein and gene expression in bone tissue1.RatOstectomy8082000.21.25
/p
20.02
mm2
5
/p
13"Immunocytochemistry scores showed no significant differences between control and laser groups either in vivo and in vitro. Gene expression also showed no statistical differences."

"Low-level laser irradiation did not alter osteocalcin protein and gene expression in vivo and in vitro in the studied period but it may have been expressed them in an earlier period."
PubMed
19
BoneBone metabolismSayuri SuzukiBrazil
(São Paulo)
2016J BiophotonicsLow-level laser therapy stimulates bone metabolism and inhibits root resorption during tooth movement in a rodent model.RatAlveolar bone810100-1.5
/point
750.02
cm2
15
/p
2
3
4
(?)
"Taken together, our results indicate that LLLT can stimulate bone remodeling reducing root resorption in a rat model. LLLT improves tooth movement via bone formation and bone resorption in a rat model."PubMed
20
BoneBone metabolismPatrocínio-SilvaBrazil
(São Carlos)
2016Arch Endocrinol MetabLow-level laser therapy associated to a resistance training protocol on bone tissue in diabetic rats.RatDiabetic rats

Exercise+LLLT on bone tissue
8081003.573.31200.028
cm2
3324"In conclusion, it can be suggested that the resistance exercise program stimulated bone metabolism, culminating in increased cortical tibial area, bone mineral content, bone mineral density and biomechanical properties. Furthermore, the association of physical exercises and LLLT produced higher values for bone mineral content and stiffness."

Star: Parameters were well reported.
PubMed
21
BoneBone metabolismGordjestaniBelgium
(Ghent)
1994Int J Oral Maxillofac SurgInfrared laser and bone metabolism: a pilot study.Rat9040.03332030056,

in
28
days
"A circular defect in each parietal bone of six Wislander rats was created. The animals were divided into two three-unit subgroups. The experimental group received infrared laser radiation on the left defect. The control group was sham irradiated. After 28 days, the bone metabolism was evaluated by technetium-99m methylene diphosphonate scintigraphy. The obtained results revealed no differences in bone metabolic activity between the laser-treated and the control defects."PubMed
22
BoneBone metabolismLugerIsrael
(Tel Aviv)
1998Laser TherThe effect of low level laser irradiation on bone cell cultureIn vitroWavelength comparison633
635
650
670
780
830
"A significant increase in DNA synthesis was observed at the wavelengths of 632.8, 635 and 830 nm, depending on the energy density level. A decrease was found at 780 nm. These findings suggest a possible therapeutic use of LLLI in the process of bone repair."J-STAGE
23
BoneBone growthYeomKorea
(Seoul)
2013Evid Based Complement Alternat MedEffects of laser acupuncture on longitudinal bone growth in adolescent rats.Rat635-
680
401.2
(?)
120

(4p)
9"In conclusion, LA promotes longitudinal bone growth in adolescent rats, suggesting that laser acupuncture may be a promising intervention for improving the growth potential for children and adolescents."PubMed
24
BoneBone repairKhosravipourIran
(Tehran)
2020Biochem Biophys Res CommunPreconditioning adipose-derived stem cells with photobiomodulation significantly increased bone healing in a critical size femoral defect in ratsRat
(+ in vitro)
630+
810
"In vitro preconditioned of hADS [adipose-derived stem cells] with PBM significantly increased ADSs viability compared to control group. A combination of ADS plus PBM had significantly increased bone repair of repairing tissue in the CSFD in comparison with control, the alone PBM in vivo, and alone ADS protocols in rats.

hADS preconditioned with PBM in vitro significantly increased bone repair in vivo and showed significantly better results than the hADS þ PBM in vivo and hADS þ PBM in vitroþin vivo protocols."
PubMed
25
BoneBone repairSantinoniBrazil2020J Biomed Mater Res ABone marrow coagulated and low-level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralizationRat6604.9"Groups BMA/LLLT and LLLT presented significantly higher VEGF expression than group control.

Group BMA/LLLT presented a significantly higher expression of PCNA than all experimental groups.

Groups BMA and BMA/LLLT presented significantly higher expression of BMP-2 than all experimental groups.

Groups LLLT and BMA/LLLT presented significantly higher expression of OPN than groups control and BMA.

Groups LLLT, BMA, and BMA/LLLT presented a significantly higher expression of OCN than group control.

It can be concluded that the association of BMA and LLLT enhanced bone healing by improving expression of VEGF, PCNA, Runx2, BMP-2, OPN, and OCN."
PubMed
26
BoneBone repairKheiriIran
(Tehran)
2020Arch Oral BiolEffect of Low- Level Laser Therapy on Bone Regeneration of Critical-Size Bone Defects: A Systematic Review of In Vivo Studies and Meta-AnalysisMeta-analysis (animal research)"Finally, 18 studies were included. Fourteen studies utilized low-level laser with a wavelength ranging from 606 to 980 nm and 53 % of studies applied low-level laser in a single session. Ten studies utilized continuous wave mode of laser. Highest and lowest values of power density were 1.5 W/cm2 and 0.1 W/cm2 in order. Eleven studies evaluated low-lever laser therapy on defects of 5 mm in calvaria.

Meta-analysis showed the positive effect of low-level laser therapy on osteogenesis after 30 days compared to control group and no significant difference after 60 days."
PubMed
27
BoneBone repairGölTurkey
(Samsun)
2020J Craniofac SurgExtracorporeal Shock-Wave Therapy or Low-Level Laser Therapy: Which is More Effective in Bone Healing in Bisphosphonate Treatment?RatTooth extraction810"The highest new bone volume was observed in the early LLLT+ESWT. New vessel volume and CD31 expression were found to be high in the LLLT group. matrixmetalloproteinaze (MMP)-2 expression was found increased by the application of LLLT and ESWT."

"The LLLT and ESWT have similar effect on socket healing in the early period and that co-use is more effective upon healing. The LLLT has been shown to increase CD31 expression and increase vascularization and soft-tissue healing."
PubMed
28
BoneBone repairCruzBrazil
(Santos)
2020J Bone Miner MetabMarine collagen scaffolds and photobiomodulation on bone healing process in a model of calvaria defects.Rat808300.8300.028
cm2
"Histological findings demonstrated that SPG/PBM-treated animals, 45 days post-surgery, demonstrated a higher amount of connective and newly formed bone tissue at the region of the defect compared to CG. Notwithstanding, no difference among groups were observed in the histomorphometry. Interestingly, for both anti-transforming growth factor-beta (TGF-β) and anti-vascular endothelial growth factor (VEGF) immunostaining, higher values for SPG/PBM, at 45 days post-surgery could be observed."PubMed
29
BoneBone repairLucaRomania
(Timisoara)
2020Int J Mol SciOsteogenic Potential of Bovine Bone Graft in Combination with Laser Photobiomodulation: An Ex Vivo Demonstrative Study in Wistar Rats by Cross-Linked Studies Based on Synchrotron Microtomography and Histology.RatCalvarial defect8080.45024.07585
(5p)
"We demonstrated that using photobiomodulation provides a better healing effect than when receiving only the support of the biomaterial. This effect has been evident for short times treatments, i.e., during the first 14 days after surgery."PubMed
30
BoneBone repairMacedoBrazil
(Aracaju)
2020J Photochem Photobiol BEffect of laser photobiomodulation associated with a bioceramic cement on the repair of bone tissue in the femur of rats.Rat8081002.2/p8022/p"Laser photobiomodulation therapy is promising as an adjuvant in the bone repair process, especially when associated with the use of biomaterials."PubMed
31
BoneBone repairRossoBrazil
(Bauru)
2020BiomoleculesPhotobiomodulation Therapy Associated with Heterologous Fibrin Biopolymer and Bovine Bone Matrix Helps to Reconstruct Long Bones.Rat830300.25960.116
cm2
beam
area
48
(2p)
"It was concluded that the association of PBMT with HFB and BM has the potential to assist in the process of reconstructing bone defects in the tibia of rats."PubMed
32
BoneBone repairMagriBrazil
(Santos)
2019Laser TherPhotobiomodulation guided healing in a sub-critical bone defect in calvarias of rats.Rat808100306
18
"Histology analysis demonstrated that for PBM most of the bone defect was filled with newly formed bone (with a more mature aspect when compared to CG). Histomorphomeric analysis also demonstrated a higher amount of newly formed bone deposition in the irradiated animals, 2 weeks post-surgery. Furthermore, there was a more intense deposition of collagen for PBM, with ticker fibers.

Results from Runx-2 immunohistochemistry demonstrated that a higher immunostaining for CG 2 week's post-surgery and no other difference was observed for Rank-L immunostaining."

"This current study concluded that the use of PBM was effective in stimulating newly formed bone and collagen fiber deposition in the sub-critical bone defect, being a promising strategy for bone tissue engineering."

PubMed
33
BoneBone repairSarmadiIran
(Tehran)
2019J Lasers Med SciThe Effect of Photobiomodulation on Distraction Osteogenesis.Review"This study reviews 18 published articles on the effects of LLLT on DO and summarizes their findings to further elucidate this topic."PubMed
34
BoneBone repairRossoBrazil
(Bauru)
2019Materials (Basel)Photobiomodulation Therapy (PBMT) Applied in Bone Reconstructive Surgery Using Bovine Bone Grafts: A Systematic Review.Systematic review (animal research)"In the studies concerning animals (17 in total), there was evidence of PBMT assisting in biomaterial-related conduction, formation of new bone, bone healing, immunomarker expression, increasing collagen fibers, and local inflammation reduction. However, the results disagreed with regard to the resorption of biomaterial particles.

The only human study showed that PBMT with bovine bone was effective for periodontal regeneration.

It was concluded that PBMT assists the process in bone reconstruction when associated with bovine bone, despite divergences between applied protocols."
PubMed
35
BoneBone repairEscuderoBrazil
(Bauru)
2019InjuryPhotobiomodulation therapy (PBMT) in bone repair: A systematic review.Systematic review (animal research)"Many studies have shown that PBMT has positive photobiostimulatory effects on bone regeneration, accelerating its process regardless of parameters and the use of biomaterials. However, standardization of its use is still imperfect and should be better studied to allow correct application concerning the utilization protocols."PubMed
36
BoneBone repairMagriBrazil
(Santos)
2019J Mater Sci Mater MedBioglass/PLGA associated to photobiomodulation: effects on the healing process in an experimental model of calvarial bone defect.Rat80810030"Interesting, the use of PBM did not have any stimulatory effects of BG/PLGA composites on the process of bone repair."PubMed
37
BoneBone repairDikerTurkey
(Istanbul)
2019
epub
J Craniofac SurgEvaluation of the Effects of Low-Level Laser Therapy on Diabetic Bone Healing.RatDiabetic rats8081003.572.278,50.028
cm2
2210"The LLLT was effective to stimulate osteoblastogenesis but failed to increase bone formation. Graft augmentation for treatment of bone defects seems essential for proper bone healing in diabetes, regeneration may be supported by the LLLT to enhance osteoblastogenesis."PubMed
38
BoneBone repairTas DeynekTurkey
(Istanbul)
2019Angle OrthodEffects of different settings for 940 nm diode laser on expanded suture in rats.RatBiphasic dose response94018
42
60
"The InGaAsP laser at the low dosage induced a favorable effect on bone formation in the orthopedically expanded midpalatal suture of rats."PubMed
39
BoneBone repairNunesBrazil
(São Paulo)
2019J Appl Oral SciThe influence of LLLT applied on applied on calvarial defect in rats under effect of cigarette smoke.Rat6603080.028
cm2
"Within the limitations of this study, it can be concluded that the PBM protocol used provided adjunctive effect on osteogenesis and may compensate the negative factor of smoking in the bone repair process."PubMed
40
BoneBone repairde MirandaBrazil
(São Paulo)
2019Int J Oral Maxillofac ImplantsHistologic Evaluation of Early Bone Regeneration Treated with Simvastatin Associated with Low-Level Laser Therapy.RatLLLT vs simvastatin830100
(?)
4
/p
(?)
"Greater new bone formation and a lower degree of inflammation were observed in the animals that had bone neoformation at the center of the defect, especially in the LLLT and SIM-LLLT groups.

SIM and C groups presented greater angiogenesis than LLLT and SIM-LLLT. SIMLLLT therapy showed a statistically significant reduction in the degree of inflammation when compared to the control group (P < .05)."
PubMed
41
BoneBone repairScalizeBrazil
(São Paulo)
2019Animal Model Exp MedLow-level laser therapy enhances the number of osteocytes in calvaria bone defects of ovariectomized rats.Rat78020/303
6
12
"We conclude that LLLT stimulated bone neoformation and contributed to an increase in the total number of osteocytes, especially with a laser energy density of 30 J/cm2 given for 6 and 12 sessions."PubMed
42
BoneBone repairGabbai-ArmelinBrazil
(São Paulo)
2018Laser TherAssociation of Bioglass/Collagen/Magnesium composites and low level irradiation: effects on bone healing in a model of tibial defect in rats.Rat808302.894"The results showed that Col could be successfully introduced into BG/Mg and the association of BG/Mg/Col and LLLT constituted an optimized treatment for accelerating material degradation and increasing bone deposition. Additionally, mechanical tests showed an increased maximal load for BG/Mg + LLLT compared to other groups."PubMed
43
BoneBone repairBuchignani Brazil
(Sāo Paulo)
2019Lasers Med SciEffect of low-level laser therapy and zoledronic acid on bone repair processRatGroups:
1) saline
2) LLLT
3) zoledronic acid (ZA)
4) ZA + LLLT

LLLT vs zoledronic acid
808300.423257.14/point0.07 cm2/point133 /point"In intergroup comparison, group 1 (mean ± SD= 45.2 ± 18.56%) showed a lower bone formation compared with groups 2 (64.13 ± 3.51%) (p = 0.358) and 4 (15.2 ± 78.22%) (p = 0.049), at the 14-day period. Group 3 (20.99 ± 7.42%) also presented a lower amount of neoformed bone tissue, with statistically significant difference when compared with groups 1 (p = 0.002), 2, and 4 (p ≤ 0,001). After 28 days, group 1 presented a lower amount of neoformed bone tissue compared with the other groups, with p = 0.020.

Thus, it was concluded that LLLT associated with zoledronic acid is effective for stimulating bone formation in surgically created defects in rats, at the periods studied."
PubMed
44
BoneBone repairPominiBrazil
(Bauru)
2019Int J Mol SciFibrin Sealant Derived from Human Plasma as a Scaffold for Bone Grafts Associated with Photobiomodulation Therapy.830300.2592.960.116
cm2
beam
94
(4p)
"It was concluded that the support system formed by the xenograft fibrin sealant associated with the photobiomodulation therapy protocol had a positive effect on the bone repair process."PubMed
45
BoneBone repairHosseinpourAustralia
(Brisbane)
2019Prog Biophys Mol BiolMolecular impacts of photobiomodulation on bone regeneration: A systematic review.Systematic review"This systematic review was performed based on PRISMA guideline. Among these studies, five articles reported in vitro results, twelve articles were in vivo, and three of them were clinical trials (...)

PBM's effects depend on many parameters which energy density is more important than the others. PBM can significantly enhance expression of osteocalcin, collagen, RUNX-2, vascular endothelial growth factor, bone morphogenic proteins, and COX-2.

Although since the heterogeneity of the studies and their limitations, an evidence-based decision for definite therapeutic application of PBM is still unattainable, the findings of our review can help other researchers to ameliorate their study design and elect more efficient approach for their investigation."
PubMed
46
BoneBone repairPinheiroBrazil
(Salvador, Bahia)
2018Lasers Med SciLaser/LED phototherapy on the repair of tibial fracture treated with wire osteosynthesis evaluated by Raman spectroscopy.RabbitLLLT vs LED780
(laser)

850
(LED)
"It is concluded that the use of either laser or LED phototherapy associated to MTA cement was efficacious on improving the repair of complete tibial fractures treated with wire osteosynthesis by increasing the synthesis of collagen matrix and creating a scaffold of calcium carbonate (carbonated hydroxyapatite-like) and the subsequent deposition of phosphate hydroxyapatite."PubMed
47
BoneBone repairGerbiBrazil
(Camaragibe)
2018Photomed Laser SurgPhotobiomodulation Therapy in Bone Repair Associated with Bone Morphogenetic Proteins and Guided Bone Regeneration: A Histomorphometric StudyRatPBM vs bone morphogenetic proteins (BMPs) and bovine biological membranes8304040,6 cm27
every 48h during 2wk
"Histological analysis confirmed the histomorphometric results, with the experimental groups showing bone neoformation of significantly higher quality and quantity at the end of 30 days compared with the control group."

"PBMT was effective for bone repair mainly when associated with BMPs and a biological membrane. The results of this study are promising and stimulate further scientific and clinical research."
PubMed
48
BoneBone repairBrassolattiBrazil
(São Carlos)
2018Lasers Med SciPhotobiomodulation on critical bone defects of rat calvaria: a systematic review.Systematic review (animal data)"Most of the evaluated articles presented positive results that describe a greater amount of neoformed bone, an increase in collagen synthesis, and a contribution to microvascular reestablishment. However, two studies report no effect on the repair process when the PBM was used. In addition, we observed considerable variations between the values of power, fluence, and total energy, which make it difficult to compare the results presented between the selected studies."

Comment: 14 papers were included to the systematic review.
PubMed
49
BoneBone repairMostafaviniaIran
(Tehran)
2018Photomed Laser SurgEvaluation of the Effects of Photobiomodulation on Partial Osteotomy in Streptozotocin-Induced Diabetes in Rats.RatDiabetic rats8901.151.51
cm2
1300
/point
"PBM significantly increased volumes of total callus, total bone, bone marrow, trabecular bone, and cortical bone, and the numbers of osteocytes and osteoblasts of callus in TIDM rats compared to those of callus in diabetic control. In addition, TIDM increased RUNX2, and osteocalcin in callus of tibial bone defect compared to healthy group. PBM significantly decreased osteocalcin gene expression in TIDM rats."PubMed
50
BoneBone repairGurler & GursoyCyprus (North)2018J Stomatol Oral Maxillofac SurgInvestigation Of Effects Of Low Level Laser Therapy In Distraction Osteogenesis.Rabbit"The use of LLLT in activation period of distraction osteogenesis stimulates bone repair in the early stages of distraction osteogenesis by inducing intramembranous healing and less cartilage tissue formation in the bone callus."PubMed
51
BoneBone repairFreitasBrazil
(Bauru)
2018J Appl Oral SciEvaluation of photobiomodulation therapy associated with guided bone regeneration in critical size defects. In vivo study.Rat808100210300
(5p)
"All groups had greater area of newly formed bone compared to group C (9.96±4.49%). The group PBMT+M (achieved the greater quantity of new bone (64.09±7.62%), followed by groups PBMT (47.67±8.66%), M (47.43±15.73%), AB+PBMT (39.15±16.72%) and AB+PBMT+M (35.82±7.68%). After group C, the groups AB (25.10±16.59%) and AB+M (22.72±13.83%) had the smallest quantities of newly formed bone. The area of remaining particles did not have statistically significant difference between groups AB+M (14.93±8.92%) and AB+PBMT+M (14.76±6.58%)."PubMed
52
BoneBone repairAlvesBrazil
(São José dos Campos)
2018Lasers Med SciEvaluation of bone repair after application of a norbixin membrane scaffold with and without laser photobiomodulation (λ 780 nm).Rat7806064"The laser PBM also showed positive effects on the bone repair process with increased deposition and organization of the newly formed bone. However, laser PBM failed to improve the bioactive properties of the membrane scaffold."PubMed
53
BoneBone repairMoreiraBrazil2018Int J Oral Maxillofac ImplantsEffect of Low-Level Laser on the Healing of Bone Defects Filled with Autogenous Bone or Bioactive Glass: In Vivo Study.Rat780100210300

(5p)
"The LLLT, in the present application protocol, did not increase the area of new bone formation when associated with autogenous bone or bioactive glass."PubMed
54
BoneBone repairde OliveiraBrazil
(São Paulo)
2018Lasers Surg MedEffect of low-level laser therapy on the healing of sites grafted with coagulum, deproteinized bovine bone, and biphasic ceramic made of hydroxyapatite and β-tricalcium phosphate. In vivo study in rats.Rat808100d = 600 µm"The animals treated with LLLT exhibited increased mineralized tissues and bone, particularly after 90 days. These increases were associated with increased BMP2, OCN, and ALP protein expression and ALP, BMP2, and Jagged1 mRNA expression."

"LLLT improved the osteoconductive potential of DBB and HA/βTCP grafts and bone formation in ungrafted areas."
PubMed
55
BoneBone repairSarvestaniIran
(Shiraz)
2017Laser TherEffect of low-level laser therapy on fracture healing in rabbits.RabbitRadial bone8304"Findings suggest that in this study, laser treatment did not enhance callus formation nor reduce repair time of complete fracture of the radius in rabbits."PubMed
56
BoneBone repairJonassonBrazil
(Curitiba)
2017J Craniomaxillofac SurgEffects of low-level laser therapy and platelet concentrate on bone repair: Histological, histomorphometric, immunohistochemical, and radiographic study.Rat780---7.5-607"LLLT reduces inflammation and contributes to increased bone formation. PC treatment was shown to maintain connective tissue and to induce fibrosis during bone repair. Combined LLLT and PC treatment did not improve bone repair."PubMedTwin Lasers (MM-Optics) device
57
BoneBone repairYildirimturkTurkey
(Istanbul)
2017J Cosmet Laser TherThe effects of low-level laser therapy on the healing of bone defects in streptozotocin-induced diabetic rats: A histological and morphometric evaluation.Rat820500161
cm2
3212"DM group had significantly smaller bone area and lower blood vessel count when compared to DM + LLLT, CONT and CONT + LLLT groups (p < 0.05 for each). CONT and CONT + LLLT groups had significantly larger bone area than DM + LLLT group (p < 0.05 for both)."

"LLLT application promoted vascularization and new bone formation in animals with DM to a limited extent, since it was unable to support the healing process up to the level of non-diabetic animals."
PubMed
58
BoneBone repairZeinItaly
(Genoa)
2017Photomed Laser SurgEffect of Low-Level Laser Therapy on Bone Regeneration During Osseointegration and Bone Graft.Systematic review"19 articles met the inclusion criteria."

"A positive effect of low-level laser energy on bone regeneration within a certain relationship between dose and output power was found. LLLT stimulates cellular metabolism, increasing protein synthesis and subsequent bone regeneration. A high dose combined with low power or a low dose combined with high power appears to produce a positive effect."
PubMed
59
BoneBone repairFernandesBrazil
(Santos)
2017J Photochem Photobiol BBiosilicate/PLGA osteogenic effects modulated by laser therapy: In vitro and in vivo studies.Rat
(+ in vitro)
Biosilicate/PLGA808301.070.84300.028
cm2
286
18
"As a conclusion, animals treated with BS/PLGA+LLLT demonstrated an improved material degradation and an increased amount of granulation tissue and newly formed bone."PubMed
60
BoneBone repairde OliveiraBrazil
(Natal)
2017Int J Exp PatholLow-level laser therapy (780 nm) combined with collagen sponge scaffold promotes repair of rat cranial critical-size defects and increases TGF-β, FGF-2, OPG/RANK and osteocalcin expression.Rat78050---120--"Compared to the [control] group, defects in the 30-day [LLLT] group exhibited increased bone formation, both by increase in radiopaque areas (P < 0.01) and by histomorphometric analysis (P < 0.001). The histopathological analysis showed a decreased number of inflammatory cells (P < 0.001). The combined CCS + LLLT (G3) treatment also resulted in the most intense immunostaining for OPG, RANK, FGF-2 and TGF-β, and the most intense and diffuse OCN immunofluorescent labelling at 30 days postsurgery (G3 vs. G0 group, P < 0.05).

Therefore, the use of CCS associated with LLLT could offer a synergistic advantage in improving the healing of bone fractures."
PubMed
61
BoneBone repairDiamantinoBrazil
(São José dos Campos)
2017
epub
Lasers Med SciEffect of non-coherent infrared light (LED, λ945 ± 20 nm) on bone repair in diabetic rats-morphometric and spectral analyses.RatDiabetic rats

LED phototherapy
94548--11.514.40.8
cm2
2407
11
14
"It can be concluded that LED therapy positively influences bone formation in the early stages of the bone repair process in non-diabetic and diabetic animals, without causing changes in the optical density and volume of tissue in the final stages. No influence of LED therapy was observed on the percentage of calcium, percentage of phosphorus, Ca/P ratio, or optical mineral density in non-diabetic animals. However, increased mineral concentration was evident in the diabetic animals treated with the LED during the repair process."PubMed
62
BoneBone repairMostafaviniaIran
(Tehran)
2017
epub
Photomed Laser SurgEvaluation of the Effects of Photobiomodulation on Bone Healing in Healthy and Streptozotocin-Induced Diabetes in Rats.RatPartial osteotomy8908320
(?)
8.32
(?)
-1.51
cm2
1300
/p
"Analysis of variance (ANOVA) (p = 0.013) results showed that treatment by PBM significantly increased the biomechanical property (stress high load) of the callus defect from the partial tibia osteotomy in healthy rats compared to the control groups. However, we observed no significant increase in the biomechanical properties of the laser-treated diabetic bone defect compared to the control diabetic group."

"The 80-Hz laser did not significantly enhance bone repair from an osteotomy of the tibia in an experimental model of TI DM rats."

Comment: The parameters seem contradictory.
PubMedDevice: "Mustang 2000; Technical Co., Moscow, Russia and LO7 probe"
63
BoneBone repairPinheiroBrazil
(Salvador, Bahia)
2017Lasers Med SciBiochemical changes on the repair of surgical bone defects grafted with biphasic synthetic micro-granular HA + β-tricalcium phosphate induced by laser and LED phototherapies and assessed by Raman spectroscopy.RatLED phototherapy
LLLT vs LED
780
laser

850
LED
70


150
---20


20

(unclear)
0.04
cm2

0.5
cm2
7?"These results indicated that the use of laser phototherapy improved the repair of bone defects grafted with the biomaterial by increasing the deposition of phosphate HA."PubMed
64
BoneBone repairIryanovRussia2016J Lasers Med SciInfluence of Laser Irradiation Low Intensity on Reparative Osteogenesis and Angiogenesis Under Transosseous Osteosynthesis.RatUzor A-2K device8904000
?
----6004"The sessions of laser irradiation decreased inflammatory process severity, activated fibrillogenesis and angiogenesis, accelerated the compactization of newly formed bone tissue, and enhanced its maturity degree while primary healing occurred in the fracture."

Comment: Parameters were poorly reported.
PubMedUzor A-2K device. Pulsing 150Hz.
65
BoneBone repairAtasoyTurkey
(Trabzon)
2017Braz Oral ResThe efficacy of low-level 940 nm laser therapy with different energy intensities on bone healing.RatBiphasic dose response?9401500
3000
6000
--5
10
20
d = 30
mm
10
10
10
7"No significant change was observed in the number of osteocytes, osteoblasts, osteoclasts and newly formed vessels at either time period across all laser groups. Although LLLT with the 10 J/cm2 energy density increased fibroblast activity at the 4th week in comparison with the 5 and 20 J/cm2 groups, no significant change was observed between the laser groups and the control group. "

"These results indicate that low-level 940 nm laser with different energy intensities may not have marked effects on the bone healing process in both phases of bone formation."
PubMed
66
BoneBone repairde AlmeidaBrazil
(Araçatuba)
2016Arch Oral BiolInfluence of low-level laser therapy on the healing process of autogenous bone block grafts in the jaws of systemically nicotine-modified rats: A histomorphometric study.RatAutogenous bone block graft66035--4-27"Nicotine harms bone formation in the bed-graft interface and LLLT action can mitigate this."

Comment: There seems to be an error in the reporting of parameters. They irradiated 8 spots with 4J/cm2 and another area with 4J/cm2. They claim that the total dose was 36J/cm2, but energy density can not be added up this way.
PubMed
67
BoneBone repairMedalhaBrazil
(São Paulo)
2016J Photochem Photobiol BLow level laser therapy accelerates bone healing in spinal cord injured rats.RatSpinal cord injury (SCI) --> Tibial bone defect808301.72.81000.028
cm2
946"The results of the histological and morphometric evaluation demonstrated that the SL group showed a larger amount of newly formed bone compared to the SC group. Moreover, a significant immunoexpression of runt-related transcription factor 2 (RUNX2) was observed in the SL group. There was no statistical difference in the biomechanical evaluation.

In conclusion, the results suggest that LLLT accelerated the process of bone repair in rats with complete SCI."
PubMed
68
BoneBone repairFekrazadIran
(Tehran)
2016Photomed Laser SurgEffects of Photobiomodulation and Mesenchymal Stem Cells on Articular Cartilage Defects in a Rabbit Model.Rabbit810300.430-4 / 8.5
(???)
-2011
(?)
"No significant difference in new cartilage formation and inflammation was found between the groups (p > 0.05). However, there was significantly more new bone formation in the experimental group (p < 0.05)."

Comment: The abstract claims the energy density is 4 J/cm2 and full text claims the energy density is 8.5 J/cm2.
PubMedThor LX2 device
69
BoneBone repairRajaei JafarabadiIran
(Tehran)
2016Lasers Med SciThe effects of photobiomodulation and low-amplitude high-frequency vibration on bone healing process: a comparative study.RatA transverse critical size defect (CSD) to femur83040-1.524d = 0.35
cm
3811
21
(?)
"The biostimulation effects of PBM or LLLT and of low-amplitude high-frequency WBV both had a positive impact on bone healing process, for critical size defects in the presence of a stainless steel implant. But their combination, i.e., low-level laser therapy and low-amplitude high-frequency whole body vibration (LV), interestingly did not accelerate the fractured bone healing process."PubMed
70
BoneBone repairMedalhaBrazil
(São Paulo)
2016J Photochem Photobiol BLow level laser therapy accelerates bone healing in spinal cord injured rats.RatSpinal cord injury (SCI) --> Tibial bone defect808301.7 /
1.07
2.81000.028
cm2
946"The results of the histological and morphometric evaluation demonstrated that the SL group showed a larger amount of newly formed bone compared to the SC group. Moreover, a significant immunoexpression of runt-related transcription factor 2 (RUNX2) was observed in the SL group. There was no statistical difference in the biomechanical evaluation. In conclusion, the results suggest that LLLT accelerated the process of bone repair in rats with complete SCI."

Comment: The power density (irradiance) was 1.7 W/cm2 according to the abstract, and 1.07 W/cm2 according to the full text.
PubMedApplication mode: Stationary in skin contact mode
71

BoneBone repairFreddoBrazil
(Porto Alegre)
2016J Oral Maxillofac SurgInfluence of a Magnetic Field and Laser Therapy on the Quality of Mandibular Bone During Distraction Osteogenesis in Rabbits.Rabbit830
/ 780
(???)
205

(on 4p?)
d = 0.4
mm
10"The LLLT group exhibited a larger amount of newly formed bone and a larger number of osteoblasts in the cell division phase, but the difference was not statistically relevant compared with the control group."

Comment: Wavelength was 830nm according to the abstract, but 780nm according to the full text.
PubMed
72
BoneBone repairBoscoBrazil
(Araçatuba)
2016J Photochem Photobiol BEffects of low-level laser therapy on bone healing of critical-size defects treated with bovine bone graft.RatBone graft660300.4219.4430.850.07
cm2
576

(8p)
1
(?)
"LLLT can improve bone formation process in CSD filled or not with BBG in rat calvaria, but it is not able to accelerate particles resorption of this material in the interior of bone defect."PubMed
73
BoneBone repairAcarTurkey2016Arch Oral BiolBone regeneration by low-level laser therapy and low-intensity pulsed ultrasound therapy in the rabbit calvarium.Rabbit810100--4-1206LLLT enhanced new bone formation in comparison to the untreated controls.

Comment: Parameters were poorly reported.
PubMedDevice: "CHEESE Dental Laser System, DEN4A"
74
BoneBone repairHavlucuTurkey
(Istanbul)
2015J Oral ImplantolEffects of Light-Emitting Diode Photobiomodulation Therapy and BioOss as Single and Combined Treatment in an Experimental Model of Bone Defect Healing in Rats.RatLED phototherapy618-0.02-24-12004
7
11
"Within the limitations of this study, LPT has positive effects on bone healing histopathologically and histomorphometrically for the defects filled with BioOss 3 weeks after the rats' femora injury."

Comment: Parameters were poorly reported. For example, spot size was not reported.
PubMedOsseoPulse LED device
75
BoneBone repairNascimentoBrazil
(Aracaju)
2015Acta Cir BrasImprovement of bone repair in diabetic rats subjected to ƛ780 nm low-level laser therapy.RatDiabetic rats780701.750.717.50.04
cm2
40
(4p)
4"Low-level laser therapy significantly increased alkaline phosphatase in at seven and 18 days (p<0.001), and improved bone healing at seven (p<0.01), 18 (p<0.05) and 30 (p<0.01) in diabetic animals. In addition, bone healing in irradiated diabetic group was statistically similar to control group at 30 days (p>0.05)."

Comment: Parameters were well reported!
PubMed
76
BoneBone repairFekrazadIran
(Tehran)
2015J Photochem Photobiol BThe effects of combined low level laser therapy and mesenchymal stem cells on bone regeneration in rabbit calvarial defects.Rabbit8100.2411
(?)
"The histological evaluation showed a statistically significant increase in new bone formation of LLLT group relative to the control and the other two experimental groups (p<0.05). There was no significant difference in bone formation of the control group compared to experimental groups filled with MSCs. Laser irradiation had no significant effect on resorption of the scaffold material. In addition, inflammation was significantly reduced in LLLT group compared to the control defects and the other two experimental groups."

"Low level laser therapy could be effective in bone regeneration but there is no evidence of a synergistic effect when applied in conjunction with MSCs."
PubMed
77
BoneBone repairSoaresBrazil (Salvador, Bahia)2015Braz Dent JRepair of surgical bone defects grafted with hydroxylapatite + β-TCP and irradiated with λ=850 nm LED light.RatSurgical bone defect

LED phototherapy

Bone graft (HA + β-TCP)
850150--200.5
cm2
-7"It may be concluded that the use of LED phototherapy was effective in positively modulating the process of bone repair of bone defects in the femur of rats submitted or not to biomaterial grafting."

Comment: Treatment parameters were poorly reported. Radiant energy, power density and treatment duration were missing.
PubMedDevice: FisioLED; MMOptics , São Carlos, SP, Brazil
78
📷BoneBone repairSellaBrazil
(São Paulo)
2015Lasers Med SciEffect of low-level laser therapy on bone repair: a randomized controlled experimental study.Rat808-0.22

(2p)
370.02
mm2
10

(2p)
8"Microscopic analysis revealed a significant decrease in inflammatory infiltration, intense trabecular bone matrix and periosteal formation, and an increase in newly formed bone after laser irradiation."PubMedMagnus Plus, DMC Equipment; gallium aluminum arsenide laser device
79
📷BoneBone repairMarquesBrazil
(Bauru)
2015Lasers Med SciNew LLLT protocol to speed up the bone healing process-histometric and immunohistochemical analysis in rat calvarial bone defect.Rat8305016
3.7
9
3
8
(?)
"The results suggest LLLT using the protocol 2 hastened the bone healing process in the early periods after surgery."

Comment: At 45 days, there was no difference between the groups, but at 15 days, the amount of newly formed bone seemed to be a little bit higher in the laser groups.

Comment: It seems that spot/beam size wasn't reported in this study.
PubMed
80
BoneBone repairOliveiraBrazil
(São Carlos)
2015Rev Bras OrtopCOMPARATIVE STUDY OF THE EFFECTS OF LOW-LEVEL LASER AND LOW-INTENSITY ULTRASOUND ASSOCIATED WITH BIOSILICATE(®) ON THE PROCESS OF BONE REPAIR IN THE RAT TIBIA.RatTHERALASE device (version 24)8301003.573.41200.028
cm2
341?"Curiously, the Biosilicate® plus laser or ultrasound groups showed lower amounts of bone tissue deposition when compared with control fracture and Biosilicate® groups."PubMed
81
BoneBone repairMagriBrazil
(São Paulo)
2015Lasers Med SciPhotobiomodulation and bone healing in diabetic rats: evaluation of bone response using a tibial defect experimental model.RatDiabetic rats

Tibial bone healing
8081003.570.84
1.68
3.36
30
60
120
0.028
cm2
8
16
33
6
12
"In the histological and morphometric evaluation, all laser-treated groups showed a better histological pattern and a higher amount of newly formed bone compared to DCG. An intense RUNX2 immunoexpression was observed in the laser-treated groups, 15 days after the surgery.

There was no statistical difference in the biomechanical analysis among the groups.

In conclusion, PBM, in all fluences used, showed an osteogenic potential in bone healing of diabetic rats"
PubMed
82
BoneBone repairBatistaBrazil
(Uberlândia)
2015Lasers Med SciLow-level laser therapy on bone repair: is there any effect outside the irradiated field?RatSystemic effects?83050-6210d = 0.028
cm
1204
8
11
"Laser therapy presented a positive local biostimulative effect in the early stage of bone healing, but the LLLT effect was not observed a long distance from the evaluated area."PubMedApplication: punctual
83
BoneBone repairAltanTurkey
(Kocaeli)
2015Lasers Med SciThe effect of dosage on the efficiency of LLLT in new bone formation at the expanded suture in rats.RatMidpalatal suture expansion82050
50
100
1.6
1.6
1.6
0.15
0.65
198
5
20
6300
d =
2 mm
(?)
3
13
1980
4"Low-level laser therapy with both 5 and 6,300 J/cm(2) doses was found to be significantly effective, while the 20 J/cm(2) dose did not show a significant effect in increasing new bone formation. This finding reveals that the efficiency of the therapy is affected by the dosage."

Note: There was increase in bone formation in the medium dose group as well, but it was a little bit less pronounced. The bone formation increase was clearly highest in the "low dose" group (87%) compared to medium (41%) and high (51%) dose groups.
PubMed
84
BoneBone repairAkyolTurkey
(Rize)
2015Lasers Med SciThe influence of low-level laser therapy with alendronate irrigation on healing of bone defects in rats.RatAlendronate potentiation808-0.1-21
cm2
205"Our findings demonstrated that Aln has a more positive effect with LLLT on bone healing in rats.

It was concluded that combining LLLT with Aln irrigation has a beneficial effect in bone repair. It was demonstrated experimentally that Aln irrigation during the surgery had a significant effect to enhance bone formation, and LLLT significantly potentiated the osseous healing effects of Aln on bone defects. This administration method is able to minimize the dose of Aln in order to avoid both systemic and local adverse effects as well as the local injection times during the bone healing process."
PubMed
85
BoneBone repairBatistaBrazil
(Uberlândia)
2014Lasers Med SciEffect of low-level laser therapy on repair of the bone compromised by radiotherapy.RatRadiotherapy83050
or
100
62100.04
cm2

or

0.028
cm2
1204"The result demonstrated a positive local biostimulative effect of LLLT in normal bone. However, LLLT was not able to revert the bone metabolic damage due to ionizing radiation."

Note: The parameters in the abstract contradict the parameters given in the full text.
PubMed
86
BoneBone repairSoaresBrazil
(Salvador, Bahia)
2014Lasers Med SciRaman study of the repair of surgical bone defects grafted with biphasic synthetic microgranular HA + β-calcium triphosphate and irradiated or not with λ780 nm laser.Rat78070--5
(?)
0.4
cm2
-7"It is concluded that the use of laser phototherapy associated to biomaterial was effective in improving bone healing on bone defects as a result of the increasing deposition of calcium hydroxyapatite measured by Raman spectroscopy."PubMed
87
BoneBone repairSoaresBrazil
(Salvador, Bahia)
2014J Photochem Photobiol BInfluence of the λ780nm laser light on the repair of surgical bone defects grafted or not with biphasic synthetic micro-granular hydroxylapatite+Beta-Calcium triphosphate.Rat78070--5
(?)
0.4
cm2
-7"Many similarities were observed histologically between groups on regards bone reabsorption and neoformation, inflammatory infiltrate and collagen deposition. The criterion degree of maturation, marked by the presence of basophilic lines, indicated that the use of LPT associated with HA+Beta TCP graft, resulted in more advanced stage of bone repair at the end of the experiment."

Comment: These authors appear to think that energy density in 4 separate points can be added up (4*5 J/cm2 = 20 J/cm2)...
PubMed
88

BoneBone repairde AlmeidaBrazil
(São Paulo)
2014Clin Oral Implants ResThe effect of low-level laser on bone healing in critical size defects treated with or without autogenous bone graft: an experimental study in rat calvaria.Rat780
or
810
(????)
-0.100
(???)
6
(?)
6
or
210
(???)
300

(5p)
60
/p

(5p total)
1"Utilization of LLL favored the healing process in rat calvaria. The quantity of new bone formation with use of the LLL was similar to the autogenous bone graft."

Comment: Parameters in abstract and full text contradict each others (eg. wavelength 780 vs 810; power density 6 J/cm2 vs 210 J/cm2

Comment: Also, the full text states that "power" is 100 mW/cm2, but that is the unit of intensity/irradiance, not power. The reporting of parameters is extremely bad in this case.
PubMed
89
BoneBone repairBabuccuTurkey
(Istanbul)
2014Int J Oral Maxillofac SurgCumulative effect of low-level laser therapy and low-intensity pulsed ultrasound on bone repair in rats.Rat820500--161
cm2
-8
11
(?)
"Combined LLLT + LIPUS treatment enhanced bone healing both histologically and mechanically, shortening the length of the treatment period, when compared to treatment with LLLT or LIPUS alone."PubMed
90
BoneBone repairAcioleBrazil
(Salvador, Bahia)
2014Lasers Med SciAssessment of the LED phototherapy on femoral bone defects of ovariectomized rats: a Raman spectral study.RatLED phototherapy85015020.40.5
cm2
1287"The results of this study are indicative that infrared LED-PT improved the deposition of [hydroxyapatite] on bone defects of ovariectomized rats."PubMed
91
BoneBone repairPinheiroBrazil2014J Photochem Photobiol BRaman ratios on the repair of grafted surgical bone defects irradiated or not with laser (λ780 nm) or LED (λ850 nm).RatLLLT vs LED
LED phototherapy
780
(laser)

850
(LED)
70


150
--5


20

(???)
0.4
cm2

0.5
cm2
-7


7
"The results of the present study are well aligned with previous reports from our group [7, 8, 9, 13, 14, 22, 27, 30] and indicate that the association of laser/LED light with HA graft improved the repair of bone defects."

Comment: I was unable to interpret the results.
PubMed
92
BoneBone repairFangelBrazil
(São Carlos)
2014J Appl Biomater Funct MaterBiomechanical properties: effects of low-level laser therapy and Biosilicate® on tibial bone defects in osteopenic rats.RatOsteopenia830120"Animals submitted to low-level laser therapy (LLLT) did not show any significant biomechanical improvement, but the association between Biosilicate® and LLLT was shown to be efficient to enhance callus biomechanical properties."PubMed
93
BoneBone repairRasouli GhahroudiIran
(Tehran)
2014Lasers Med SciEffect of low-level laser therapy irradiation and Bio-Oss graft material on the osteogenesis process in rabbit calvarium defects: a double blind experimental study.Rabbit810300--4--11"The mean amount of new bone was 15.83 and 18.5% in the controls on the 4th and 8th week; 27.66 and 25.16% in the laser-irradiated group; 35.0 and 41.83% in Bio-Oss and 41.83 and 47.0% in the laser + Bio-Oss treated specimens with significant statistical differences (p <0.05).

Application of LLLT in combination with Bio-Oss® can promote bone healing. Therefore, LLLT may be clinically beneficial in promoting bone formation in skeletal defects."

Comment: Parameters were very poorly reported.
PubMed
94
BoneBone repairGarciaBrazil
(Araçatuba)
2014J Craniomaxillofac SurgEffect of LLLT on autogenous bone grafts in the repair of critical size defects in the calvaria of immunosuppressed rats.Rat66035-0.704.9

(on 5 points)
0.0283
cm2
20
(5p)
1"The use of LLLT with [autogenous bone] effectively stimulated bone formation in CSDs in the calvaria of immunosuppressed rats."PubMed
95
BoneBone repairBarbosaBrazil
(São Paulo)
2014Acta Ortop BrasLaser therapy in bone repair in rats: analysis of bone optical density.RatWavelength comparison660
830
100--4
4
1
cm2
404
7
11
"Based on the radiographic findings, G (830nm) showed more complete bone regeneration, as shown in the gray shades of the images."PubMedFlash Lase III (DMC Equipment Ltda, São Carlos, SP, Brazil)
96
BoneBone repairSoaresBrazil
(Salvador, Bahia)
2014Lasers Med SciDo laser/LED phototherapies influence the outcome of the repair of surgical bone defects grafted with biphasic synthetic microgranular HA + β-tricalcium phosphate? A Raman spectroscopy study.RatLED phototherapy

LLLT vs LED
780
(laser)

850
(LED)
70


150
--5


5

(on 4 points)
0.4
cm2

0.5
cm2
-7


7
"Raman intensities of both mineral and matrix components indicated that the use of laser and LED phototherapies improved the repair of bone defects grafted or not with biphasic synthetic microgranular HA + β-tricalcium phosphate."PubMedLaser device: TwinFlex Evolution®, MMOptics
LED device: FisioLED®, MMOptics
97
BoneBone repairCoelhoBrazil
(Porto Alegre)
2014Lasers Med SciSystemic effects of LLLT on bone repair around PLLA-PGA screws in the rabbit tibia.Rabbit830100--1

(on 4 points)
d = 0.06 cm40.4

(4p)
max
7
"The results observed in the left paw of experimental animals were compared with the left paws of control animals. We also compared the right and left paws of experimental animals so as to compare local and potential systemic effects. Bone specimens were analyzed to assess the extent of peri-implant bone formation, quantitative analysis revealed greater bone formation in the left tibia of experimental animals as compared to controls on 5-day follow-up. Descriptive analysis revealed slightly larger and thicker trabeculae in the irradiated animals at 5 days post-procedure.

There were no significant differences at any other point in time. As used in this study, LLLT had a positive systemic effect on the early stages of bone formation."
PubMed
98
BoneBone repairCunhaBrazil2014Biomed Res IntEffect of low-level laser on bone defects treated with bovine or autogenous bone grafts: in vivo study in rat calvaria.Rat7801006
/p
2100.05
cm2
"In the present study, the fact that all groups irradiated with LLL presented superior results to group C and groups receiving only grafts suggests that this type of therapy may be effective in the healing of bone defects, especially when associated with a filling material."PubMed
99
BoneBone repairEl-MaghrabyEgypt
(Cairo)
2013Arch Oral BiolAssessment of the effect of low-energy diode laser irradiation on gamma irradiated rats' mandibles.RatGamma radiation

Oral (mandible)
90430-5.4-1
cm2
1804"Thin irregular bone trabeculae and widened marrow spaces were identified in the control group. The lased sides of groups 1 and 2 demonstrated regular, thick and continuous bone trabeculae."

"Normal-sized osteocytic lacunae were seen in the lased groups, as compared to the wide lacunar spaces noted in the control group. Histomorphometric analysis showed a significant increase in the area of bone trabeculae, as well as the width of compact bone, for the lased groups."

Note: A nicely written paper, with nice results and electron microscopy pictures of bone tissue! Only the parameters were a little bit poorly reported, but they are easy to calculate from the given values.
PubMedDevice: ora-laser 1030
100
BoneBone repairMendonçaBrazil
(Araras)
2013Laser PhysComparative study of the application of microcurrent and AsGa 904 nm laser radiation in the process of repair after calvaria bone excision in ratsRat904369"The results showed significant responses in the reduction of inflammatory cells and an increase in the number of new blood vessels, number of fibroblasts and deposition of birefringent collagen fibers when these data were compared with those of samples of the untreated lesions.

Both applications, microcurrent and laser at 904 nm, favored tissue repair in the region of bone excisions during the study period and these techniques can be used as coadjuvantes in the repair of bone tissue."
IOP
Loading...