| A | B | C | D | E | F | G | H | I | J | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | AA | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | To contribute or comment please contact: Michael Meighu or Cedric Berger via Linked in | |||||||||||||||||||||||||
2 | Level: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||||||||||||||||
3 | Name: | Using LLM in its Own Interface | App using a Foundational LLM via an API | Simple RAG | Advanced RAG (including Graph RAG) | RAG with Task Orientated Agents | LLMs with Tool Integration for Calculations and Reasoning | LLMs with Knowledge Graphs Integration | Instructional Fine-Tuned Models | Continual Learning and Adaptive systems | ||||||||||||||||
4 | Use cases: | General Q&A Basic Chat | General Q&A Chat Basic Integrations into 3rd party applications Customer service bots | Document retrieval and summary Domain-specific Q&A Business specific chatbots | Complex document workflows (e.g. Medical reports) Personalized context driven enterprise applications Sophisticated business decision making support | Enterprise workflow automation Complex multi-task execution Data driven automation | Executing real-time calculations Automating code writing and debugging using integrated developer tools Complex task workflows involving APIs and databases (e.g., data retrieval, processing, and reporting) Performing actions based on reasoning over multiple data sources (e.g., auto-generation of reports, decision-making support) Dynamic task execution | Context-aware conversational agents Complex, multi-step decision-making processes based on structured and unstructured data Enhanced search and retrieval systems that understand relationships between concepts Personalized recommendations in regulated industries using contextualized data Biomedical research support, including drug discovery and patient data synthesis Data-driven risk analysis and regulatory compliance automation | Fine-tuned, domain specific models Customizable chatbot experiences High-accuracy decision support systems | Adaptive systems that improve over time Proactive task completion Personalized AI-driven decision support in complex environments | ||||||||||||||||
5 | Business Impact | Improves basic interatctions and general knowledge access | Streamlines basic interactions and integrates into existing systems. | Increases efficiency by providing fast, relevant document retrieval. | Automates complex document workflows, improving productivity. | Automates enterprise-level tasks, reducing human intervention. | Increased Decision-Making Power Operational Efficiency Advanced Customization Scalability of Business Processes | Enhanced decision-making capabilities due to better contextual understanding and reasoning Improved accuracy and efficiency in automating complex workflows Knowledge continuity and collaboration across teams with reduced need for manual knowledge retrieval Unlocking new insights from both structured and unstructured data, leading to operational efficiencies Faster and more accurate answers in domains like drug discovery, clinical trials, and regulatory compliance | Custom solutions tailored to business, unlocking advanced automation. | Ongoing system improvement, maximizes operational efficiency and adaptability. | ||||||||||||||||
6 | KPIs | Response time, User engagement | System uptime, API call success rate | Document retrieval accuracy, User satisfaction | Automation coverage, Time saved in workflows | Reduction in manual task completion, Process efficiency | Tool Integration Efficiency Accuracy of Computations/Reasoning Reduction in Manual Task Completion Time Saved in Complex Workflows | Knowledge retrieval accuracy Task automation success rate (using LLM and Knowledge Graph integrations) Reduction in time spent on complex queries or multi-step decision processes Growth and adaptability of the Knowledge Graph over time (e.g., number of nodes, relationships) Accuracy of entity linking and context-aware responses Model’s ability to handle complex reasoning tasks (e.g., through Knowledge Graph-guided inference) | Model accuracy in fine-tuned tasks, Customization success | Model drift detection System adaptability | ||||||||||||||||
7 | Organizational Readiness | Basic NLP understandint, simple integration capability | Basic API integration skills, LLM provider relationship | In-house data management, Basic search integration | Advanced search, NLP and document processing skills | Complex AI orchestration, Governance for task automation | Mature cross department collaboration Advanced technical skills Security protocols | "Mature cross department collaboration Advanced technical skills Security protocols " | Expertise in fine-tuning models, Domain-specific knowledge | Lifecycle management skills, Continual learning infrastructure | ||||||||||||||||
8 | Tasks: | Text Classification Token Classification Table Question Answering Question Answering Zero Shot Classification Translation Summarization Feature Extraction Text Generation Text2Text Generation Fill Mask Sentence Similarity | As before. | As before but with additional: Retrieval of specific documents or data based on prompts Augmenting and LLM with domain knowledge Handling structured and semi-structured queries | As before but with additional: Retrieving and summarizing complex documents Multi-turn Q&A within a specialised domain Combining data retrieval with generative capabilities | As before but with additional: Agents that can execute tasks Workflow orchestration Automating routine tasks | As before but with additional: Real time data processing Advanced decision support Automated workflow management Custom task execution | As before but with additional: Semantic search and question answering using domain-specific knowledge Automated report generation by synthesizing data from structured and unstructured sources Complex reasoning tasks requiring cross-referencing between natural language inputs and structured knowledge Entity recognition and disambiguation using Knowledge Graph context Adaptive learning by updating the knowledge graph based on new data or model predictions | As before but with additional: Fine-Tuning LLMs on proprietry data Creating custom workflows based on fine tuned LLM models Specialised conversations | As before but with additional: Continual model training and adaptation based on user interactions and new data Implementing feedback loops to automatically refine model accuracy Full-scale automation of end-to-end processes, with dynamic adaptability to changing conditions | ||||||||||||||||
9 | Architecture Needed: | None | API (Access to LLM services through simple API calls) Basic server infrastructure for handling requests Control layer | Orchestration Layer Embedding Layer Vector database Control layer | Orchestration Layer Advanced Vector Database Embedding layer with more complex embeddings for nuanced data retrieval Control layer | Orchestration Layer Advanced Vector Database Embedding layer with more complex embeddings for nuanced data retrieval Agent Management Layer Automation systems integration (such as RPA) Control layer | Cloud and API Integration Scalable Infrastructure Data Pipelines Microservices Architecture Control layer | Hybrid architecture combining LLMs (for natural language understanding) with Knowledge Graphs (for structured, contextual data) Querying mechanisms to extract insights by linking entities, relationships, and concepts Real-time integration of knowledge from external data sources (e.g., databases, APIs) Feedback loops for continual learning and knowledge graph expansion Control layer | Fine-tuning infrastructure Custom dataset integration with training pipeline Continous monitoring and updating models Control layer | Advanced Continual Learning Framework (to support ongoing model retraining) Feedback Loops and Monitoring Infrastructure (to capture and analyze performance data) Real-time Data Processing Pipelines for adaptive decision-making Highly scalable orchestration and agent layers Control layer | ||||||||||||||||
10 | Complaince and Security Risks | |||||||||||||||||||||||||
11 | Mitigation | |||||||||||||||||||||||||
12 | Complexity: | Low | Moderate | Moderate - High | High - Very High | Very high | Very high - Extremely high | Extremely high | Extremely high | Extremely high | ||||||||||||||||
13 | ||||||||||||||||||||||||||
14 | ||||||||||||||||||||||||||
15 | ||||||||||||||||||||||||||
16 | ||||||||||||||||||||||||||
17 | ||||||||||||||||||||||||||
18 | ||||||||||||||||||||||||||
19 | ||||||||||||||||||||||||||
20 | ||||||||||||||||||||||||||
21 | ||||||||||||||||||||||||||
22 | ||||||||||||||||||||||||||
23 | ||||||||||||||||||||||||||
24 | ||||||||||||||||||||||||||
25 | ||||||||||||||||||||||||||
26 | ||||||||||||||||||||||||||
27 | ||||||||||||||||||||||||||
28 | ||||||||||||||||||||||||||
29 | ||||||||||||||||||||||||||
30 | ||||||||||||||||||||||||||
31 | ||||||||||||||||||||||||||
32 | ||||||||||||||||||||||||||
33 | ||||||||||||||||||||||||||
34 | ||||||||||||||||||||||||||
35 | ||||||||||||||||||||||||||
36 | ||||||||||||||||||||||||||
37 | ||||||||||||||||||||||||||
38 | ||||||||||||||||||||||||||
39 | ||||||||||||||||||||||||||
40 | ||||||||||||||||||||||||||
41 | ||||||||||||||||||||||||||
42 | ||||||||||||||||||||||||||
43 | ||||||||||||||||||||||||||
44 | ||||||||||||||||||||||||||
45 | ||||||||||||||||||||||||||
46 | ||||||||||||||||||||||||||
47 | ||||||||||||||||||||||||||
48 | ||||||||||||||||||||||||||
49 | ||||||||||||||||||||||||||
50 | ||||||||||||||||||||||||||
51 | ||||||||||||||||||||||||||
52 | ||||||||||||||||||||||||||
53 | ||||||||||||||||||||||||||
54 | ||||||||||||||||||||||||||
55 | ||||||||||||||||||||||||||
56 | ||||||||||||||||||||||||||
57 | ||||||||||||||||||||||||||
58 | ||||||||||||||||||||||||||
59 | ||||||||||||||||||||||||||
60 | ||||||||||||||||||||||||||
61 | ||||||||||||||||||||||||||
62 | ||||||||||||||||||||||||||
63 | ||||||||||||||||||||||||||
64 | ||||||||||||||||||||||||||
65 | ||||||||||||||||||||||||||
66 | ||||||||||||||||||||||||||
67 | ||||||||||||||||||||||||||
68 | ||||||||||||||||||||||||||
69 | ||||||||||||||||||||||||||
70 | ||||||||||||||||||||||||||
71 | ||||||||||||||||||||||||||
72 | ||||||||||||||||||||||||||
73 | ||||||||||||||||||||||||||
74 | ||||||||||||||||||||||||||
75 | ||||||||||||||||||||||||||
76 | ||||||||||||||||||||||||||
77 | ||||||||||||||||||||||||||
78 | ||||||||||||||||||||||||||
79 | ||||||||||||||||||||||||||
80 | ||||||||||||||||||||||||||
81 | ||||||||||||||||||||||||||
82 | ||||||||||||||||||||||||||
83 | ||||||||||||||||||||||||||
84 | ||||||||||||||||||||||||||
85 | ||||||||||||||||||||||||||
86 | ||||||||||||||||||||||||||
87 | ||||||||||||||||||||||||||
88 | ||||||||||||||||||||||||||
89 | ||||||||||||||||||||||||||
90 | ||||||||||||||||||||||||||
91 | ||||||||||||||||||||||||||
92 | ||||||||||||||||||||||||||
93 | ||||||||||||||||||||||||||
94 | ||||||||||||||||||||||||||
95 | ||||||||||||||||||||||||||
96 | ||||||||||||||||||||||||||
97 | ||||||||||||||||||||||||||
98 | ||||||||||||||||||||||||||
99 | ||||||||||||||||||||||||||
100 |