ABCDEFGHIJKLMNOPQRSTUVWXYZ
1
Standard TextbookOpen Educational Resource
2
Limits and Derivatives (Chapter 2)
3
The Tangent and Velocity Problems (83-87)Pages 124-129
4
The Limit of a Function (88-99)Pages 135-151
5
Calculating Limits Using the Limit Laws (99-108)Pages 160-174
6
The Precise Definition of a Limit (109-118)Pages 194-205
7
Continuity (119-130)Pages 179-190
8
Limits at Infinity; Horizontal Asymptotes (130-143)Page 86-96
9
Derivatives and Rates of Change (143-153)Page 214-227
10
The Derivative as a Function (154-165)Page 232-242
11
12
Differentiation Rules (Chapter 3)
13
Derivatives of Polynomials and Exponential Functions (173-183)Page 247-253, 319-323
14
The Product and Quotient Rules (183-189)Page 253-256, 769
15
Derivatives of Trigonometric Functions (189-197)Page 277-284
16
The Chain Rule (197-207)Page 287-296, loosely
17
Implicit Differentiation (207-215)Page 309-316
18
Derivatives of Logarithmic Functions (215-220)Multiple sources (see PDF)
19
Related Rates (241-247)Multiple sources (see PDF)
20
Linear Approximations and Differentials (247-254)Page 354-363
21
Hyperbolic Functions (254-261)Multiple sources (see PDF)
22
23
Applications of Differentiation (Chapter 4)
24
Maximum and Minimum Values (271-280)
Page 169-177 (Lyryx), Page 370-375 (OpenStax)
25
The Mean Value Theorem (280-286)Page 379-387
26
How Derivatives Affect the Shape of a Graph (287-298)
Page 199-208 (Lyryx), Page 398-402 (OpenStax)
27
Indeterminate Forms and L'Hospital's Rule (298-307)Page 454-469
28
Optimization Problems (322-334)
Page 210-215 (Lyryx), Page 439-450 (OpenStax)
29
Newton's Method (334-340)Page 472-480
30
Antiderivatives (340-347)Page 485-496
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100