A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | AA | AB | AC | AD | AE | AF | AG | AH | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

1 | Label | Type | ID | Authors | Year | Title | Publishment | From Doc. (ID) | Added date | Read 1 (abs, fig) | Read 2 (all txt) | Read 3 (all eq; full) | Key words | Summary post | ||||||||||||||||||||

2 | machine learning | 1 | Ilya Sutskever, James Martens, Geoffrey Hinton | 2011 | Generating Text with Recurrent Neural Networks | [ICML 2011] | 6/12/2017 | |||||||||||||||||||||||||||

3 | machine learning | 2 | Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin | 2003 | A Neural Probabilistic Language Models | Journal of Machine Learning Research | 6/12/2017 | |||||||||||||||||||||||||||

4 | machine learning | 3 | Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, Jeff Dean | 2013 | Distributed representations of words and phrases and their compositionality | [NIPS 2013] Advances in Neural Information Processing Systems 26 | 6/12/2017 | |||||||||||||||||||||||||||

5 | artificial intelligence | 4 | Alan M. Turing | 1950 | Computing Machinery and Intelligence | Mind 49: 433-460 | 6/12/2017 | imitation game, Turing test | ||||||||||||||||||||||||||

6 | machine learning | 5 | Marcus Liwicki, Alex Graves, Horst Bunke, J¨urgen Schmidhuber | 2007 | A Novel Approach to On-Line Handwriting Recognition Based on Bidirectional Long Short-Term Memory Networks | [ICDAR 2007] Proceedings of the 9th International Conference on Document Analysis and Recognition | 6/12/2017 | RNN, LSTM(Long Short Term Memory), pattern recognition | ||||||||||||||||||||||||||

7 | machine learning | 6 | David Rumelhart, Geoffrey Hinton, Ronald Williams | 1986 | Learning representations by backpropagating errors | Nature | 6/17/2017 | backpropagtion | ||||||||||||||||||||||||||

8 | 7 | 2010 | From Frequency to Meaning: Vector Space Models of Semantics | Journal of Artificial Intelligence Research | 6/18/2017 | |||||||||||||||||||||||||||||

9 | machine learning | 8 | Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean | 2013 | Efficient Estimation of Word Representations in Vector Space | ICLR Workshop | word2vec | 6/18/2017 | skip-gram model | |||||||||||||||||||||||||

10 | artificial intelligence | 9 | Peratham Wiriyathammabhum, Douglas Summers-Stay, Cornelia Fermüller, Yiannis Aloimonos | 2017 | Computer Vision and Natural Language Processing: Recent Approaches in Multimedia and Robotics | [CSUR] ACM Computing Surveys | kkmin | 7/17/2017 | 7/13/2017 | survey, computer vision, natural language processing | ||||||||||||||||||||||||

11 | 10 | McCulloch, W. S., Pitts, W. | 1943 | A logical calculus of ideas immanent in nervous activity | Bulletin of Mathematical Biophysics | Deep Learning | 7/19/2017 | perceptron | ||||||||||||||||||||||||||

12 | 11 | Hebb, D. O. | 1949 | The Organization of Behavior | Wiley, New York | 7/19/2017 | ||||||||||||||||||||||||||||

13 | machine learning | 12 | Hinton, G. E., Osindero, S., and Teh, Y. | 2006 | A fast learning algorithm for deep belief nets | Neural Computation | Deep Learning | 7/19/2017 | ||||||||||||||||||||||||||

14 | machine learning | 13 | Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. | 2006 | Greedy layer-wise training of deep networks | NIPS 2006 | Deep Learning | 7/19/2017 | ||||||||||||||||||||||||||

15 | machine learning | 14 | Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. | 2006 | Efficient learning of sparse representations with an energy-based model | NIPS 2006 | Deep Learning | 7/19/2017 | ||||||||||||||||||||||||||

16 | 15 | Hinton, G. E. and Shallice, T. | 1991 | Lesioning an attractor network: investigations of acquired dyslexia | Psychological review | 7/19/2017 | a kind of neural networks used for machine learning used to understand brain function | |||||||||||||||||||||||||||

17 | 16 | Jordan, M. I. | 1998 | Learning in Graphical Models | Kluwer | 7/19/2017 | graphical model | |||||||||||||||||||||||||||

18 | 17 | James Martens, Ilya Sutskever | 2011 | Learning Recurrent Neural Networks with Hessian-Free Optimization | ICML 2011 | NNML course | 7/25/2017 | RNN, Echo-State-Network | ||||||||||||||||||||||||||

19 | 18 | Herbert Jaeger, Harald Haas | 2004 | Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication | Science | 17 | 7/25/2017 | |||||||||||||||||||||||||||

20 | machine learning | 19 | Yoshua Bengio, Aaron Courville, Pascal Vincent | 2014 | Representation Learning: A Review and New Perspectives | arxiv | https://arxiv.org/pdf/1206.5538.pdf | https://stats.stackexchange.com/questions/95480/comparing-different-deep-learning-models | 7/26/2017 | representation learning, review | ||||||||||||||||||||||||

21 | 20 | Dayan, P., Hinton, G. E. E., Neal, R. M. M., & Zemel, R. S. S. | 1995 | The Helmholtz machine | Neural Computation | 딥러닝 장병탁 | 7/27/2017 | |||||||||||||||||||||||||||

22 | 21 | G. Cybenko | 1989 | Approximation by Superpositions of a Sigmoidal Function | Mathematics of Control, Signals, and Systems | 딥러닝 장병탁 | 7/27/2017 | Prove that one hidden layer is enough. | ||||||||||||||||||||||||||

23 | 22 | Hornik, K. | 1991 | Approximation capabilities of multilayer feedforward networks | Neural Networks | 딥러닝 장병탁 | 7/27/2017 | Prove that one hidden layer is enough. | ||||||||||||||||||||||||||

24 | sequence model | 23 | Ilya Sutskever, Oriol Vinyals
, Quoc V. Le
| 2014 | Sequence to Sequence Learning with Neural Networks | NIPS 2014 | 8/27/2017 | |||||||||||||||||||||||||||

25 | sequence model | 24 | S. Hochreiter, J. Schmidhuber | 1997 | Long short-term memory | Neural Computation | 8/27/2017 | |||||||||||||||||||||||||||

26 | dataset | 25 | Yuncheng Li, Yale Song, Liangliang Cao, Joel Tetreault, Larry Goldberg, Alejandro Jaimes, Jiebo Luo | 2016 | TGIF: A New Dataset and Benchmark on Animated GIF Description | CVPR 2016 | 8/31/2017 | {(GIF, description)} dataset | ||||||||||||||||||||||||||

27 | language model | 26 | Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Raquel Urtasun, Antonio Torralba, Sanja Fidler | 2015 | Skip-Thought Vectors | NIPS 2015 | 8/31/2017 | sentence2vector | ||||||||||||||||||||||||||

28 | language model | 27 | Quoc V. Le, Tomas Mikolov | 2014 | Distributed Representations of Sentences and Documents | ICML 2014 | 8/31/2017 | |||||||||||||||||||||||||||

29 | 28 | Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King, Christopher Summerfield,Phil Blunsom, Koray Kavukcuoglu, Demis Hassabis | 2016 | Hybrid computing using a neural network with dynamic external memory | Nature | 9/1/2017 | ||||||||||||||||||||||||||||

30 | 29 | Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, Yoshua Bengio | 2014 | Identifying and attacking the saddle point problem in high-dimensional non-convex optimization | NIPS 2014 | 9/18/2017 | google search | |||||||||||||||||||||||||||

31 | 30 | Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, Yoshua Bengio | 2014 | Identifying and attacking the saddle point problem in high-dimensional non-convex optimization | arXiv:1406.2572 | 9/18/2017 | ||||||||||||||||||||||||||||

32 | dropout | 31 | Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. | 2014 | Dropout: A Simple Way to Prevent Neural Networks from Overfitting | JMLR | 9/28/2017 | |||||||||||||||||||||||||||

33 | dropout | 32 | Pierre Baldi, Peter J. Sadowski | 2013 | Understanding Dropout | NIPS | ||||||||||||||||||||||||||||

34 | batch normalization | 33 | Sergey Ioffe, Christian Szegedy | 2015 | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift | ICML | https://arxiv.org/abs/1502.03167 | |||||||||||||||||||||||||||

35 | dropout | 34 | Kyunghyun Cho | 2013 | Understanding Dropout: Training Multi-Layer Perceptrons with Auxiliary Independent Stochastic Neurons | arXiv | ||||||||||||||||||||||||||||

36 | measure AI | 35 | Marco Baroni, Armand Joulin, Allan Jabri, Germàn Kruszewski, Angeliki Lazaridou, Klemen Simonic, Tomas Mikolov | 2017 | CommAI: Evaluating the first steps towards a useful general AI | arXiv | Tomas Mikolov | |||||||||||||||||||||||||||

37 | language model | 36 | Alexander G Ororbia II, Tomas Mikolov, David Reitter | 2017 | Learning Simpler Language Models with the Differential State Framework | Neural Computation | Tomas Mikolov | |||||||||||||||||||||||||||

38 | language model | 37 | Armand Joulin, Edouard Grave, Piotr Bojanowski, Tomas Mikolov | 2016 | Bag of tricks for efficient text classification | arXiv | Tomas Mikolov | |||||||||||||||||||||||||||

39 | language model | 38 | Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov | 2016 | Enriching word vectors with subword information | arXiv | Tomas Mikolov | |||||||||||||||||||||||||||

40 | measure AI | 39 | Tomas Mikolov, Armand Joulin, Marco Baroni | 2015 | A roadmap towards machine intelligence | arXiv | Tomas Mikolov | |||||||||||||||||||||||||||

41 | measure AI | 40 | Kushal Kafle, Christopher Kanan | 2017 | An Analysis of Visual Question Answering Algorithms | arXiv | jinwha kim | |||||||||||||||||||||||||||

42 | NLP, machine learning | 41 | David M. Blei, Andrew Y. Ng, Michael I. Jordan | 2001 | Latent Dirichlet Allocation | NIPS | search engine | |||||||||||||||||||||||||||

43 | NLP, machine learning | 42 | David M. Blei, Andrew Y. Ng, Michael I. Jordan | 2003 | Latent Dirichlet Allocation | JMLR | search engine | |||||||||||||||||||||||||||

44 | optimization | 43 | James Bergstra, Yoshua Bengio | 2012 | Random search for hyper-parameter optimization | JMLR | http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf | |||||||||||||||||||||||||||

45 | activation function | 44 | Adam Coates, Andrew Y. Ng | 2011 | Selecting receptive fields in deep networks | NIPS 2011 | ||||||||||||||||||||||||||||

46 | 45 | Ilya Sutskever | 2013 | Training recurrent neural networks | Thesis | |||||||||||||||||||||||||||||

47 | 46 | Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, Samuel J. Gershman | 2017 | Building Machines That Learn and Think Like People | Behavioral and Brain Sciences | |||||||||||||||||||||||||||||

48 | reinforcement learning | 47 | Richard Bellman | 1957 | A Markovian Decision Process | Journal of Mathematics and Mechanics. 6 | https://en.wikipedia.org/wiki/Markov_decision_process | |||||||||||||||||||||||||||

49 | 48 | Stickel, M. E. | 1988 | A prolog technology theorem prover: Implementation by an extended prolog compiler | Journal of Automated Reasoning. 4 (4): 353–380 | |||||||||||||||||||||||||||||

50 | NLP dataset | 49 | Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, Percy Liang | 2016 | SQuAD: 100,000+ Questions for Machine Comprehension of Text | EMNLP | 2/23/2018 | 2/23/2018 | ||||||||||||||||||||||||||

51 | 50 | Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, Antoine Bordes | 2017 | Supervised Learning of Universal Sentence Representations from Natural Language Inference Data | EMNLP | 2/23/2018 | ||||||||||||||||||||||||||||

52 | GAN, text generation | 51 | William Fedus, Ian J. Goodfellow, Andrew M. Dai | 2018 | MaskGAN: Better Text Generation via Filling in the ______ | arXiv | 2/23/2018 | |||||||||||||||||||||||||||

53 | QA dataset | 52 | Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M. Rush, Bart van Merriënboer, Armand Joulin, Tomas Mikolov | 2015 | Towards AI Complete Question Answering: A Set of Prerequisite Toy Tasks | arXiv | 2/24/2018 | |||||||||||||||||||||||||||

54 | representation learning | 53 | Jeffrey Pennington, Richard Socher, Christopher D. Manning | 2014 | GloVe: Global Vectors for Word Representation | EMNLP | https://nlp.stanford.edu/pubs/glove.pdf | 2/24/2018 | word representation | |||||||||||||||||||||||||

55 | text dataset | 54 | Samuel R. Bowman, Gabor Angeli, Christopher Potts, Christopher D. Manning | 2015 | A large annotated corpus for learning natural language inference | EMNLP | https://nlp.stanford.edu/pubs/snli_paper.pdf | 2/24/2018 | ||||||||||||||||||||||||||

56 | initialization | 55 | Xavier Glorot, Yoshua Bengio | 2010 | Understanding the difficulty of training deep feedforward neural networks | AISTATS | http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf | http://cs231n.github.io/neural-networks-2/#init | 2/27/2018 | Xavier initialization | ||||||||||||||||||||||||

57 | initialization | 56 | Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun | 2015 | Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification | ICCV | https://arxiv.org/abs/1502.01852 | http://cs231n.github.io/neural-networks-2/#init | 2/27/2018 | ReLU, weight initialization | ||||||||||||||||||||||||

58 | dropout | 57 | Stefan Wager, Sida I. Wang, Percy Liang | 2013 | Dropout Training as Adaptive Regularization | NIPS | http://papers.nips.cc/paper/4882-dropout-training-as-adaptive-regularization.pdf | http://cs231n.github.io/neural-networks-2/#init | 2/27/2018 | |||||||||||||||||||||||||

59 | 58 | 2001 | Part-of-Speech Tagging with Recurrent Neural Networks | IJCNN | http://www.dlsi.ua.es/~japerez/pub/pdf/ijcnn2001.pdf | |||||||||||||||||||||||||||||

60 | 59 | 2017 | Deep Neural Networks in Computational Neuroscience | bioRxiv | ||||||||||||||||||||||||||||||

61 | 60 | Haohan Wang, Bhiksha Raj | 2017 | On the Origin of Deep Learning | arXiv | 3/9/2018 | ||||||||||||||||||||||||||||

62 | 61 | Yoshua Bengio, Aaron C. Courville, Pascal Vincent | 2013 | Representation Learning: A Review and New Perspectives | IEEE Trans. Pattern Anal. Mach. Intell. 35(8) | 3/10/2018 | ||||||||||||||||||||||||||||

63 | 62 | Guillaume Alain, Yoshua Bengio | 2014 | What Regularized Auto-Encoders Learn from the Data-Generating Distribution | Journal of Machine Learning Research 15(1) | 3/10/2018 | ||||||||||||||||||||||||||||

64 | 63 | Robert Gens, Pedro M. Domingos | 2012 | Discriminative learning of sum-product networks | NIPS | https://papers.nips.cc/paper/4516-discriminative-learning-of-sum-product-networks.pdf | 3/12/2018 | |||||||||||||||||||||||||||

65 | 64 | Hoifung Poon and Pedro Domingos | 2011 | Sum-Product Networks - A New Deep Architecture | UAI | https://dslpitt.org/uai/papers/11/p337-poon.pdf | 3/12/2018 | |||||||||||||||||||||||||||

66 | 65 | James Martens | 2010 | Deep Learning via Hessian-free Optimization | ICML | http://www.cs.toronto.edu/~jmartens/docs/Deep_HessianFree.pdf | 3/13/2018 | |||||||||||||||||||||||||||

67 | 66 | James Martens, Ilya Sutskever | 2011 | Learning Recurrent Neural Networks with Hessian-Free Optimization | ICML | http://www.icml-2011.org/papers/532_icmlpaper.pdf | 3/13/2018 | |||||||||||||||||||||||||||

68 | 67 | Martin Krzywinski, Naomi Altman | 2013 | Points of significance: Importance of being uncertain | Nature Methods 10, 809–810 | 3/14/2018 | 3/10/2018 | |||||||||||||||||||||||||||

69 | 68 | Martin Krzywinski, Naomi Altman | 2013 | Points of significance: Significance, P values and t-tests | Nature Methods 10, 1041–1042 | 3/14/2018 | 3/9/2018 | |||||||||||||||||||||||||||

70 | 69 | Sang-Woo Lee, Yu-Jung Heo, Byoung-Tak Zhang | 2018 | Answerer in Questioner's Mind for Goal-Oriented Visual Dialogue | axXiv | https://arxiv.org/pdf/1802.03881.pdf | 3/14/2018 | |||||||||||||||||||||||||||

71 | 70 | 2012 | Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups | 3/14/2018 | ||||||||||||||||||||||||||||||

72 | cognitive science | 71 | Andrew D. Wilson, Sabrina Golonka | 2013 | Embodied cognition is not what you think it is | Front. Psychol., 12 | https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00058/full | 3/15/2018 | ||||||||||||||||||||||||||

73 | cognitive science | 72 | Howard Eichenbaum | 2008 | Memory | Scholarpedia | http://www.scholarpedia.org/article/Memory | |||||||||||||||||||||||||||

74 | cognitive science | 73 | 이정모 | 2010 | ‘체화된 인지(Embodied Cognition)’ 접근과 학문간 융합 | 철학사상, 38, 27-6 | http://www.dbpia.co.kr/Journal/ArticleDetail/NODE02123010 | |||||||||||||||||||||||||||

75 | NLP, CV | 74 | Damien Teney, Anton van den Hengel | 2016 | Zero-Shot Visual Question Answering | arXiv | https://arxiv.org/pdf/1611.05546.pdf | 안우영 | 3/18/2018 | |||||||||||||||||||||||||

76 | 75 | Wagenmakers, E.-J., Lee, M. D., Lodewyckx, T., & Iverson, G. | 2008 | Bayesian versus frequentist inference | Bayesian evaluation of informative hypotheses (pp. 181-207) | http://www.ejwagenmakers.com/2008/BayesFreqBook.pdf | 3/18/2018 | |||||||||||||||||||||||||||

77 | 76 | Rangel, A., Camerer, C., & Montague, P. R. | 2008 | A framework for studying the neurobiology of value-based decision making | Nature reviews neuroscience, 9(7), 545 | 안우영 | 3/18/2018 | |||||||||||||||||||||||||||

78 | 77 | Niv, Y. | 2009 | Reinforcement learning in the brain | Journal of Mathematical Psychology, 53(3), 139-154 | 안우영 | 3/18/2018 | |||||||||||||||||||||||||||

79 | 78 | Heathcote, A., Brown, S. D. & Wagenmakers, E.-J. | 2015 | An introduction to good practices in cognitive modeling | An Introduction to Model-based Cognitive Neuroscience, pp. 25-48. Springer | http://www.springer.com/cda/content/document/cda_downloaddocument/9781493922352-c1.pdf?SGWID=0-0-45-1507168-p177055772 | 안우영 | 3/18/2018 | ||||||||||||||||||||||||||

80 | 79 | Stephen Grossberg | 2017 | Towards solving the hard problem of consciousness: The varieties of
brain resonances and the conscious experiences that they support | Neural Networks 87 (2017) 38–95 | https://www.sciencedirect.com/science/article/pii/S0893608016301800 | 장병탁 | 3/19/2018 | ||||||||||||||||||||||||||

81 | NLP | 80 | Julien Tissier, Christopher Gravier, Amaury Habrard | 2017 | Dict2vec : Learning Word Embeddings using Lexical Dictionaries | EMNLP | http://aclweb.org/anthology/D17-1024 | 3/19/2018 | ||||||||||||||||||||||||||

82 | book | 81 | John von Neumann | 1958 | The computer and the brain | Yale University Press | https://dl.acm.org/citation.cfm?id=578873 | 3/26/2018 | ||||||||||||||||||||||||||

83 | paper - journal | 82 | Stephen J. Ceci, Wendy M. Williams | 1997 | Schooling, Intelligence, and Income | American Psychologist 52(10):1051-1058 | https://www.bc.edu/content/dam/files/schools/cas_sites/psych/pdf/critique_income_.pdf | 3/26/2018 | ||||||||||||||||||||||||||

84 | paper - journal | 83 | Neisser, Ulric,Boodoo, Gwyneth,Bouchard Jr., Thomas J.,Boykin, A. Wade,Brody, Nathan,Ceci, Stephen J.,Halpern, Diane F.,Loehlin, John C.,Perloff, Robert,Sternberg, Robert J.,Urbina, Susana | 1996 | Intelligence: Knowns and Unknowns | American Psychologist, Vol 51(2), 77-101 | http://psych.colorado.edu/~carey/pdfFiles/IQ_Neisser2.pdf | 3/26/2018 | ||||||||||||||||||||||||||

85 | paper - conference | 84 | Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, Robert Fergus | 2010 | Deconvolutional networks | CVPR | http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf | 3/27/2018 | ||||||||||||||||||||||||||

86 | slide | 85 | Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, Robert Fergus | Deconvolutional Networks | https://cs.nyu.edu/~fergus/drafts/utexas2.pdf | 3/27/2018 | ||||||||||||||||||||||||||||

87 | slide | 86 | 한보형 | Deconvolutions in Convolutional Neural Networks | http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf | 3/27/2018 | ||||||||||||||||||||||||||||

88 | 87 | Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, Andrew Y. Ng | 2011 | Multimodal deep learning | ICML | http://ai.stanford.edu/~ang/papers/icml11-MultimodalDeepLearning.pdf | 3/30/2018 | |||||||||||||||||||||||||||

89 | optimization | 88 | James Bergstra, Yoshua Bengio | 2012 | Random Search for Hyper-Parameter Optimization | JMLR | http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf | 4/5/2018 | ||||||||||||||||||||||||||

90 | 89 | Kurt Hornik, Maxwell B. Stinchcombe, Halbert White | 1989 | Multilayer Feedforward Networks are Universal Approximators | Neural Networks 2(5): 359-366 | https://pdfs.semanticscholar.org/f22f/6972e66bdd2e769fa64b0df0a13063c0c101.pdf | 4/6/2018 | |||||||||||||||||||||||||||

91 | 90 | George Cybenko | 1989 | Approximation by superpositions of a sigmoidal function | MCSS 2(4): 303-314 | https://link.springer.com/article/10.1007/BF02551274 | 4/6/2018 | |||||||||||||||||||||||||||

92 | 91 | The Power of Depth for Feedforward Neural Networks | 4/7/2018 | |||||||||||||||||||||||||||||||

93 | 92 | Universal function approximation by deep neural nets with bounded width and relu activations | 4/7/2018 | |||||||||||||||||||||||||||||||

94 | 93 | Understanding Deep Neural Networks with Rectified Linear Units | 4/7/2018 | |||||||||||||||||||||||||||||||

95 | 94 | Lawrence W. Barsalou | 2010 | Grounded cognition: past, present, and future | Topics in Cognitive Science, 2(4): 716-724 | http://matt.colorado.edu/teaching/highcog/readings/b8.pdf | 4/8/2018 | |||||||||||||||||||||||||||

96 | 95 | Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, Rob Fergus | 2013 | Intriguing properties of neural networks | arXiv | https://arxiv.org/pdf/1312.6199.pdf | 4/28/2018 | |||||||||||||||||||||||||||

97 | 96 | 2018 | Improving Supervised Bilingual Mapping of Word Embeddings | arXiv | 4/28/2018 | |||||||||||||||||||||||||||||

98 | NLP, RNN | 97 | 2010 | Recurrent neural network based language model | Interspeech | 5/7/2018 | ||||||||||||||||||||||||||||

99 | 98 | 1999 | Text Compression as a Test for Artificial Intelligence | AAAI | 5/7/2018 | |||||||||||||||||||||||||||||

100 | 99 | 2017 | A Survey of Available Corpora for Building Data-Driven Dialogue Systems | https://arxiv.org/pdf/1512.05742.pdf | 5/7/2018 |

Loading...