| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Schedule | http://www.mlgworkshop.org/2020/#program | |||||||||||||||||||||
2 | Main Workshop Zoom | https://zoom.us/j/97352101734?pwd=dFVmaE5yamY2VmR0Qk01eWNncDF4QT09 | |||||||||||||||||||||
3 | MLG Contributed Talks / Breakout | https://zoom.us/j/92946882275?pwd=SXJPVi9wTENtVGkyb3BraEZYZCthQT09 | |||||||||||||||||||||
4 | Posters Video Playlist | https://www.youtube.com/playlist?list=PLNJJrghmwDuur4R-xOUW203_o-egylH8k | |||||||||||||||||||||
5 | |||||||||||||||||||||||
6 | Morning (Starting 11:30 AM PT) | Afternoon (Starting 4:00 PM PT) | |||||||||||||||||||||
7 | Session 1 | Session 1 | |||||||||||||||||||||
8 | Adversarial Learning for Debiasing Knowledge Graph Embeddings | https://www.youtube.com/watch?v=a5fFOKc5os8 | Join Zoom Meeting | Examining COVID-19 Forecasting using Spatio-Temporal Graph Neural Networks | https://www.youtube.com/watch?v=phYf15A5A50 | ||||||||||||||||||
9 | CONE-Align: Consistent Network Alignment with Proximity-Preserving Node Embedding | https://www.youtube.com/watch?v=27I2fCRSWu0 | https://zoom.us/j/95176781311?pwd=cVVVek1kUXp6VTc0WFY0NUcvUVV2UT09 | Substitution Techniques for Grocery Fulfillment and Assortment Optimization Using Product Graphs | https://www.youtube.com/watch?v=NdxX6Djfddw | ||||||||||||||||||
10 | Decoupled Smoothing in Probabilistic Soft Logic | https://www.youtube.com/watch?v=icXAvFtF_dE | TIES: Temporal Interaction Embeddings for Enhancing Social Media Integrity at Facebook | https://www.youtube.com/watch?v=ZI7flmqxV20 | |||||||||||||||||||
11 | Understanding and Evaluating Structural Node Embeddings | https://www.youtube.com/watch?v=Y-YKgsETx3A | Graph Frequency Analysis of COVID-19 Incidence in the United States | https://www.youtube.com/watch?v=YalBH6WpS3w | |||||||||||||||||||
12 | Unsupervised Hierarchical Graph Representation Learning by Mutual Information Maximization | https://www.youtube.com/watch?v=2Ox0QURMCRA | |||||||||||||||||||||
13 | |||||||||||||||||||||||
14 | Session 2 | Session 2 | |||||||||||||||||||||
15 | Karate Club: An API Oriented Open-Source Python Framework for Unsupervised Learning on Graph | https://www.youtube.com/watch?v=t212-ntxu2U | Join Zoom Meeting | MIDAS: Microcluster-Based Detector of Anomalies in Edge Streams | https://www.youtube.com/watch?v=DPmN-uPW8qU | ||||||||||||||||||
16 | Little Ball of Fur: A Python Library for Graph Sampling | https://www.youtube.com/watch?v=5OpjBqlPWME | https://notredame.zoom.us/j/94809878862?pwd=bUc5bThEYTJpaVV0eXlxbytPQTc0Zz09 | On Structural vs Proximity-based Temporal Node Embeddings | https://www.youtube.com/watch?v=EvQlYmgRt-8 | ||||||||||||||||||
17 | SNAPSKETCH: Graph Representation Approach for Intrusion Detection in a Streaming Graph | https://www.youtube.com/watch?v=wi9DISFQXLo | Link Predictions in an Online Health Community for Smoking Cessation | https://www.youtube.com/watch?v=W_nJG5x_fPw | |||||||||||||||||||
18 | Learning Distrbuted Representations of Graphs with Geo2DR | https://www.youtube.com/watch?v=X2AwBcyqtuk | Meeting ID: 948 0987 8862 | Network Embedding with Attribute Refinement | https://www.youtube.com/watch?v=4E9-kVVlggc | ||||||||||||||||||
19 | Characterising the atomic structure of mono-metallic nanoparticles from x-ray scattering data using conditional generative models | https://www.youtube.com/watch?v=t3SsWfy6DF0 | Passcode: 873021 | Hop Sampling: A Simple Regularized Graph Learning for Non-Stationary Environments | https://www.youtube.com/watch?v=7pedDukqAiU | ||||||||||||||||||
20 | |||||||||||||||||||||||
21 | Session 3 | Session 3 | |||||||||||||||||||||
22 | Graph Summarization and Graph Embeddings: A Spectral Connection | https://www.youtube.com/watch?v=laFmO6Jn-Q4 | Join Zoom Meeting | First- and Higher-Order Bipartite Embeddings | https://www.youtube.com/watch?v=_lXLnlNDWfI | ||||||||||||||||||
23 | Graph-based State Representations for Deep Reinforcement Learning | https://www.youtube.com/watch?v=n7-XdEl_Ehs | https://fb.zoom.us/j/2334607637 | Comparison of Graph Generation Models focusing on Accuracy and Variation | https://www.youtube.com/watch?v=sP_xFH0b9Oo | ||||||||||||||||||
24 | Heterogeneous Threshold Estimation for Linear Threshold Modeling | https://www.youtube.com/watch?v=3sjCsQkq7ho | Passcode: 546879 | BRGAN: Generating Graphs of Bounded Rank | https://www.youtube.com/watch?v=PXcd2VKPNbA | ||||||||||||||||||
25 | Effectiveness of Sampling Strategies for One-shot Active Learning from Relational Data | https://www.youtube.com/watch?v=_XeHurAjVOs | Adaptive Granularity in Time Evolving Graphs as Tensors | https://www.youtube.com/watch?v=gKAFQeO4Mtg | |||||||||||||||||||
26 | Learning Generic Representation for Dynamic Social Interaction | https://www.youtube.com/watch?v=i0uxMh0RBrQ | |||||||||||||||||||||
27 | Collective Bio-entity Recognition via Hinge-Loss Markov Random Fields | https://www.youtube.com/watch?v=u1VWK70BlbY | |||||||||||||||||||||
28 | |||||||||||||||||||||||
29 | Session 4 | ||||||||||||||||||||||
30 | A Scalable Parallel Hypergraph Generator (HyGen) | https://www.youtube.com/watch?v=27I2fCRSWu0 | |||||||||||||||||||||
31 | Active Learning on Graphs with Geodesically Convex Classes | https://www.youtube.com/watch?v=MsxJT2cP8yg | |||||||||||||||||||||
32 | Efficient Algorithms to Mine Maximal Span-Trusses From Temporal Graphs | https://www.youtube.com/watch?v=27I2fCRSWu0 | |||||||||||||||||||||
33 | GATCheck: A Detailed Analysis of Graph Attention Networks | https://www.youtube.com/watch?v=w6ea75UkfP0 | |||||||||||||||||||||
34 | Influence of Asymmetry and Structural Roles on Triad Patterns in Undirected Networks | https://www.youtube.com/watch?v=DRc8WO-OBNw | |||||||||||||||||||||
35 | |||||||||||||||||||||||
36 | Session 5 | ||||||||||||||||||||||
37 | Graph Clustering with Graph Neural Networks | https://www.youtube.com/watch?v=-zT0DHB6eW0 | |||||||||||||||||||||
38 | Mining Persistent Activity in Continually Evolving Networks | https://www.youtube.com/watch?v=0ue2wQSUaDg | |||||||||||||||||||||
39 | Network Experiment Design for Estimating Direct Treatment Effects | https://www.youtube.com/watch?v=27I2fCRSWu0 | |||||||||||||||||||||
40 | Robust Unsupervised Mining of Dense Sub-Graphs at Multiple Resolutions | https://www.youtube.com/watch?v=3J1W5CYy4dw | |||||||||||||||||||||
41 | Scalable and Consistent Estimation in Continuous-time Networks of Relational Events | https://www.youtube.com/watch?v=kaqMGrMWXcI | |||||||||||||||||||||
42 | Scale-Free, Attributed and Class-Assortative Graph Generation to Facilitate Introspection of Graph Neural Networks | https://www.youtube.com/watch?v=tj6H4cvbP5Y | |||||||||||||||||||||
43 | |||||||||||||||||||||||
44 | |||||||||||||||||||||||
45 | |||||||||||||||||||||||
46 | |||||||||||||||||||||||
47 | |||||||||||||||||||||||
48 | |||||||||||||||||||||||
49 | |||||||||||||||||||||||
50 | |||||||||||||||||||||||
51 | |||||||||||||||||||||||
52 | |||||||||||||||||||||||
53 | |||||||||||||||||||||||
54 | |||||||||||||||||||||||
55 | |||||||||||||||||||||||
56 | |||||||||||||||||||||||
57 | |||||||||||||||||||||||
58 | |||||||||||||||||||||||
59 | |||||||||||||||||||||||
60 | |||||||||||||||||||||||
61 | |||||||||||||||||||||||
62 | |||||||||||||||||||||||
63 | |||||||||||||||||||||||
64 | |||||||||||||||||||||||
65 | |||||||||||||||||||||||
66 | |||||||||||||||||||||||
67 | |||||||||||||||||||||||
68 | |||||||||||||||||||||||
69 | |||||||||||||||||||||||
70 | |||||||||||||||||||||||
71 | |||||||||||||||||||||||
72 | |||||||||||||||||||||||
73 | |||||||||||||||||||||||
74 | |||||||||||||||||||||||
75 | |||||||||||||||||||||||
76 | |||||||||||||||||||||||
77 | |||||||||||||||||||||||
78 | |||||||||||||||||||||||
79 | |||||||||||||||||||||||
80 | |||||||||||||||||||||||
81 | |||||||||||||||||||||||
82 | |||||||||||||||||||||||
83 | |||||||||||||||||||||||
84 | |||||||||||||||||||||||
85 | |||||||||||||||||||||||
86 | |||||||||||||||||||||||
87 | |||||||||||||||||||||||
88 | |||||||||||||||||||||||
89 | |||||||||||||||||||||||
90 | |||||||||||||||||||||||
91 | |||||||||||||||||||||||
92 | |||||||||||||||||||||||
93 | |||||||||||||||||||||||
94 | |||||||||||||||||||||||
95 | |||||||||||||||||||||||
96 | |||||||||||||||||||||||
97 | |||||||||||||||||||||||
98 | |||||||||||||||||||||||
99 | |||||||||||||||||||||||
100 | |||||||||||||||||||||||