Simulation exercises on outlier analysis
The version of the browser you are using is no longer supported. Please upgrade to a supported browser.Dismiss

1
Lilliputia is a tiny state that looks like a 6 x 3 grid. Each square of the grid has the same number of voters, who all vote for either the "1 Party" or the "0 Party".
2
We want to divide Lilliputia into 6 districts. There are 170 different ways to do this; you can see all of them at the bottom of this page.
3
Depending on where the 1-voters and the 0-voters live, different plans give different results. You can experiment with different demographics for Lilliputia in the green rectangle below. (An empty square is the same as a 0.)
4
The table will give you a summary of the results; you can also scroll down to look at the plans themselves.
5
6
11
Number of plans in which 1 wins...
Percentage:
7
1
0 districts:
00%
8
1
1 districts:
00%
9
111
2 districts:
00%
10
11
3 districts:
12674%
11
1
4 districts:
4426%
12
5 districts:
00%
13
6 districts:
00%
14
TOTAL PLANS:
170100%
15
16
17
Experiment with different possible distributions of 0 and 1 voters in Lilliputia.
1) Can you find a situation where 1/3 of the voters are 1's, but a random districting plan is more likely to give them no districts than two districts? (Two out of six is what they would get if you had proportional representation.)
2) Can you find a situation where 1/3 of the voters are 1's, but this time a plan where they win no districts looks very suspicious? (Give an example of such a plan.)
3) Can you find a situation where 1/3 of the voters are 1's, and this time a plan where they win 3 districts looks suspicious? (Give an example of such a plan.)
4) Can you find a situation where 1/3 of the voters are 1's, but there is simply no way for them to win more than one district?
5) Now experiment with situations where half the voters are 1's. Which arrangements of their voters are most advantageous for Party 1?
Which are least advantageous? Are there arrangements that are hard to gerrymander in either direction?
18
19
20
DO NOT EDIT ANYTHING BELOW THIS LINE!!!
21
22
3333333433
23
113113112112112112111112112112
24
10101111111111121111
25
13111111111112101111
26
1111111311131113111211121113111311131112
27
112111110111113113111110111111
28
11121312111112131213
29
30
31
32
3333333344
33
112112112112112112112112112112
34
11111111111111111112
35
11111111131111111211
36
1112111311131111111111111113111311121112
37
113112113113112112112112112112
38
11111012111311111111
39
40
41
42
3344444444
43
112112112112112112112112112112
44
11111111111111111111
45
11111212121212121212
46
1111111311121112111211121112111211121112
47
113110112112111110110111112112
48
12131111121313121111
49
50
51
52
3333343334
53
111113111111111112111113111112
54
12111313111012101110
55
11101010121211111212
56
1113111311121112111211121112111211121112
57
111110113113113113113113113113
58
12131111111111111111
59
60
61
62
3333333333
63
111113111113111113111112111113
64
12101210121011101210
65
11111111111313131111
66
1113111311131113111311111112111111131113
67
110111111113112112112113111113
68
13121210111111111210
69
70
71
72
3333333333
73
112112112112112112112112112112
74
11111111111111111111
75
11111111111111111111
76
1113111311121112111311121111111111111112
77
111110113113112113112112113113
78
12131111111113131211
79
80
81
82
4433343434
83
112112112112112112112112112112
84
11111111111111111111
85
12121111111211121112
86
1112111211131113111211121112111211121112
87
110111112112113112113112113111
88
13121111111111111112
89
90
91
92
3344433333
93
112112112112112112112112112112
94
11111112121211111111
95
11111211111111111111
96
1113111311121112111211111113111311131113
97
110111110111112113113111112112
98
13121312111110121111
99
100