Simulation exercises on outlier analysis
The version of the browser you are using is no longer supported. Please upgrade to a supported browser.Dismiss

1
Lilliputia is a tiny state that looks like a 6 x 3 grid. Each square of the grid has the same number of voters, who all vote for either the "1 Party" or the "0 Party".
2
We want to divide Lilliputia into 6 districts. There are 170 different ways to do this; you can see all of them at the bottom of this page.
3
11
Depending on where the 1-voters and the 0-voters live, different plans give different results. The table below gives a summary.
4
1
5
1
Number of plans in which 1 wins...
Percentage:
6
0 districts:
00%
7
1
1 districts:
170100%
8
1
2 districts:
00%
9
3 districts:
00%
10
4 districts:
00%
11
5 districts:
00%
12
6 districts:
00%
13
TOTAL PLANS:
170100%
14
15
16
17
Experiment with different possible distributions of 0 and 1 voters in Lilliputia.
1) Can you find a situation where 1/3 of the voters are 1's, but a random districting plan is more likely to give them no districts than two districts? (Two out of six is what they would get if you had proportional representation.)
2) Can you find a situation where 1/3 of the voters are 1's, but this time a plan where they win no districts looks very suspicious? (Give an example of such a plan.)
3) Can you find a situation where 1/3 of the voters are 1's, and this time a plan where they win 3 districts looks suspicious? (Give an example of such a plan.)
4) Can you find a situation where 1/3 of the voters are 1's, but there is simply no way for them to win more than one district?
5) Now experiment with situations where half the voters are 1's. Which arrangements of their voters are most advantageous for Party 1?
Which are least advantageous? Are there arrangements that are hard to gerrymander in either direction?
18
19
20
DO NOT EDIT ANYTHING BELOW THIS LINE!!!
21
22
1111111111
23
111112112112112112112113112112
24
11111111111111101111
25
10111111111111111111
26
2000110001
27
11111111101011111110
28
11111111111111111111
29
30
31
32
1111111111
33
112112112112112112112112112112
34
11111111111111111111
35
11111111101111111011
36
1001110010
37
11111110111011111111
38
10111111111111111111
39
40
41
42
1111111111
43
112113112113112113112113113112
44
11101110111011101011
45
11111010101010101010
46
1011111111
47
10111111111111111111
48
11111111111111111111
49
50
51
52
1111111111
53
112112112112112113112112112113
54
11111111111111111111
55
11111111111011111110
56
0011111111
57
11111010101010101010
58
11111111111111111111
59
60
61
62
1111111111
63
112112112112112112112113112112
64
11111111111111111111
65
11111111111010101111
66
0000011100
67
11111111111111101111
68
11111111111111111111
69
70
71
72
1111111111
73
112112112112112112113112113112
74
11111111111110111011
75
11111111111111111111
76
0011011111
77
11111010111010101011
78
11111111111111111110
79
80
81
82
1111111111
83
112112112112112112112112112112
84
11111111111111111111
85
10101111111011101110
86
1100111111
87
11111111101110111111
88
11111111111111111011
89
90
91
92
1111111111
93
112112112112112112112112113112
94
11111111101111111011
95
11111011111111111111
96
0010110000
97
11111111111011111111
98
11111111111111111111
99
100