ABCDEFGHIJKLMNOPQRSTUVWXY
1
UIDtitleauthorsdatevenuekeywordslinkcode_link
2
narihira2015judgement"Learning Lightness from Human Judgement on Relative Reflectance"Takuya Narihira|Michael Maire|Stella X. Yu2015CVPRweak-supervision|neural
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.698.5035
3
narihira2015direct
"Direct Intrinsics: Learning Albedo-Shading Decomposition by Convolutional Regression"
Takuya Narihira|Michael Maire|Stella X. Yu2015ICCVintrinsic diffuse|full-supervision|gradients|neuralhttps://github.com/tnarihi/direct-intrinsics
4
zhou2015learning"Learning Data-driven Reflectance Priors for Intrinsic Image Decomposition"
Tinghui Zhou|Philipp Krahenbuhl|Alexei A. Efros
2015ICCVintrinsic diffuse|weak-supervision|neuralhttps://arxiv.org/abs/1510.02413
https://github.com/tinghuiz/learn-reflectance
5
zoran2015learning"Learning Ordinal Relationships for Mid-Level Vision"
Daniel Zoran|Phillip Isola|Dilip Krishnan|William T. Freeman
2015ICCVintrinsic diffuse|weak-supervision|neuralhttps://people.csail.mit.edu/danielzoran/ordinal.pdf
6
kovacs2017shading"Shading Annotations in the Wild"
Balazs Kovacs|Sean Bell|Noah Snavely|Kavita Bala
2017CVPR
intrinsic diffuse|weak-supervision|dataset|neural
https://arxiv.org/abs/1705.01156
https://github.com/kovibalu/saw_release
7
nestmeyer2017reflectance
"Reflectance Adaptive Filtering Improves Intrinsic Image Estimation"Thomas Nestmeyer|Peter V. Gehler2017CVPR
intrinsic diffuse|weak-supervision|heuristic priors|neural
https://arxiv.org/abs/1612.05062
https://github.com/tnestmeyer/reflectance-filtering
8
shi2017learning"Learning Non-Lambertian Object Intrinsics across ShapeNet Categories"Jian Shi|Yue Dong|Hao Su|Stella X. Yu2017CVPR
intrinsic residual|full-supervision|gradients|neural
https://arxiv.org/abs/1612.08510
https://github.com/shi-jian/shapenet-intrinsics
9
janner2017self"Self-Supervised Intrinsic Image Decomposition"
Michael Janner|Jiajun Wu|Tejas D. Kulkarni|Ilker Yildirim|Joshua B. Tenenbaum
2017CVPR
intrinsic diffuse|inverse lighting|normals|full-supervision|self-supervision|objects|neural
https://arxiv.org/abs/1711.03678
https://github.com/JannerM/intrinsics-network
10
meka2018lime"LIME: Live Intrinsic Material Estimation"
Abhimitra Meka|Maxim Maximov|Michael Zollhoefer|Avishek Chatterjee|Hans-Peter Seidel|Christian Richardt|Christian Theobalt
2018CVPR
intrinsic residual|inverse lighting|phong|self-supervision|objects|neural
https://vcai.mpi-inf.mpg.de/projects/LIME/
11
baslamisli2018cnn
"CNN based Learning using Reflection and Retinex Models for Intrinsic Image Decomposition"
Anil S. Baslamisli|Hoang-An Le|Theo Gevers2018CVPR
intrinsic diffuse|full-supervision|self-supervision|gradients|neural
https://arxiv.org/abs/1712.01056
12
cheng2018intrinsic"Intrinsic Image Transformation via Scale Space Decomposition"Lechao Cheng|Chengyi Zhang|Zicheng Liao2018CVPR
intrinsic diffuse|full-supervision|self-supervision|heuristic priors|neural
https://arxiv.org/abs/1805.10253
https://github.com/liygcheng/PyrResNet
13
fan2018revisiting"Revisiting Deep Intrinsic Image Decompositions"
Qingnan Fan|Jiaolong Yang|Gang Hua|Baoquan Chen|David Wipf
2018CVPR
intrinsic diffuse|weak-supervision|full-supervision|gradients|heuristic priors|neural
https://arxiv.org/abs/1701.02965
https://github.com/fqnchina/IntrinsicImage
14
li2018watching"Learning Intrinsic Image Decomposition from Watching the World"Zhengqi Li|Noah Snavely2018CVPR
intrinsic diffuse|self-supervision|multi-image|heuristic priors|dataset|neural
https://arxiv.org/abs/1804.00582
https://github.com/zl548/unsupervised-learning-intrinsic-images
15
yu2019inverserendernet
"InverseRenderNet: Learning single image inverse rendering"Ye Yu|William A. P. Smith2019CVPR
intrinsic diffuse|inverse lighting|normals|full-supervision|self-supervision|multi-image|heuristic priors|neural
https://arxiv.org/abs/1811.12328
https://github.com/YeeU/InverseRenderNet
16
li2018cgintrinsics
"CGIntrinsics: Better Intrinsic Image Decomposition through Physically-Based Rendering"
Zhengqi Li|Noah Snavely2018ECCV
intrinsic diffuse|weak-supervision|full-supervision|gradients|heuristic priors|dataset|neural
https://arxiv.org/abs/1808.08601
https://github.com/zl548/CGIntrinsics
17
ma2018single"Single Image Intrinsic Decomposition Without a Single Intrinsic Image"
Wei-Chiu Ma|Hang Chu|Bolei Zhou|Raquel Urtasun|Antonio Torralba
2018ECCV
intrinsic diffuse|full-supervision|gradients|self-supervision|multi-image|neural
https://www.semanticscholar.org/paper/Single-Image-Intrinsic-Decomposition-Without-a-Ma-Chu/d21ae77ae653bfb766ebc916ddf6047a45abfa30
18
bi2018deep"Deep Hybrid Real and Synthetic Training for Intrinsic Decomposition"
Sai Bi|Nima Khademi Kalantari|Ravi Ramamoorthi
2018EGSR
intrinsic diffuse|full-supervision|self-supervision|multi-image|heuristic priors|neural
https://arxiv.org/abs/1807.11226
19
lettry2018darn"DARN: a Deep Adversial Residual Network for Intrinsic Image Decomposition"Louis Lettry|Kenneth Vanhoey|Luc Van Gool2018WACV
intrinsic diffuse|full-supervision|gradients|self-supervision|neural
https://arxiv.org/abs/1612.07899
20
sengupta2019neural"Neural Inverse Rendering of an Indoor Scene from a Single Image"
Soumyadip Sengupta|Jinwei Gu|Kihwan Kim|Guilin Liu|David W. Jacobs|Jan Kautz
2019ICCV
intrinsic residual|inverse lighting|phong|normals|self-supervision|weak-supervision|neural
https://arxiv.org/abs/1901.02453
21
zhou2019glosh"GLoSH: Global-Local Spherical Harmonics for Intrinsic Image Decomposition"Hao Zhou|Xiang Yu|David W. Jacobs2019ICCV
intrinsic diffuse|inverse lighting|spherical gaussians|normals|full-supervision|self-supervision|neural
https://openaccess.thecvf.com/content_ICCV_2019/html/Zhou_GLoSH_Global-Local_Spherical_Harmonics_for_Intrinsic_Image_Decomposition_ICCV_2019_paper.html
22
liu2020unsupervised
"Unsupervised Learning for Intrinsic Image Decomposition from a Single Image"
Yunfei Liu|Yu Li|Shaodi You|Feng Lu2020CVPR
intrinsic diffuse|self-supervision|heuristic priors|neural
https://arxiv.org/abs/1911.09930
https://github.com/DreamtaleCore/USI3D
23
li2020inverse
"Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF from a Single Image"
Zhengqin Li| Mohammad Shafiei|Ravi Ramamoorthi|Kalyan Sunkavalli|Manmohan Chandraker
2020CVPR
intrinsic residual|svbrdf|inverse lighting|spherical gaussians|normals|full-supervision|self-supervision|heuristic priors|neural
https://arxiv.org/abs/1905.02722
https://github.com/lzqsd/InverseRenderingOfIndoorScene
24
grosse2009"Ground truth dataset and baseline evaluations for intrinsic image algorithms"
Roger Grosse|Micah K. Johnson | Edward H. Adelson| William T. Freeman
2009ICCVdatasethttps://www.cs.toronto.edu/~rgrosse/iccv09-intrinsic.pdf
25
MPISintel2012"A Naturalistic Open Source Movie for Optical Flow Evaluation"
Daniel J. Butler | Jonas Wulff | Garrett B. Stanley | Michael J. Black
2012ECCVdataset
https://files.is.tue.mpg.de/black/papers/ButlerECCV2012.pdf
26
ILC2013"User-assisted Image Compositing for Photographic Lighting"Ivaylo Boyadzhiev | Sylvain Paris | Kavita Bala2013SIGdataset
http://people.csail.mit.edu/sparis/publi/2013/siggraph_lighting/Boyadzhiev_13_User-assisted_Image_Compositing.pdf
27
IIW2014"Intrinsic images in the wild"Sean Bell | Kavita Bala | Noah Snavely2014SIGdatasethttp://opensurfaces.cs.cornell.edu/intrinsic/
28
ShapeNet2015"ShapeNet An Information-Rich 3D Model Repository"
Angel X. Chang | Thomas Funkhouser | Leonidas Guibas | Pat Hanrahan | Qixing Huang | Zimo Li | Silvio Savarese | Manolis Savva | Shuran Song | Hao Su | Jianxiong Xiao | Li Yi | Fisher Yu
2015ArXivdatasethttps://shapenet.org/publications
29
SUNCG2017"Semantic scene completion from a single depth image"
Shuran Song | Fisher Yu | Andy Zeng | Angel X. Chang | Manolis Savva | Thomas Funkhouser
2017CVPRdatasethttp://sscnet.cs.princeton.edu/
30
PBRS2017
"Physically-based rendering for indoor scene understanding using convolutional neural networks"
Yinda Zhang | Shuran Song | Ersin Yumer | Manolis Savva | Joon-Young Lee | Hailin Jin | Thomas Funkhouser
2017CVPRdatasethttps://arxiv.org/abs/1612.07429
31
FSVG2018"Free supervision from video games"Philipp Krähenbühl2018CVPRdatasethttp://www.philkr.net/fsv/
32
MegaDepth2018"MegaDepth: Learning single-view depth prediction from internet photos."Zhengqi Li, Noah Snavely2018CVPRdatasethttps://www.cs.cornell.edu/projects/megadepth/
33
shekhar2021"Interactive Photo Editing on Smartphones via Intrinsic Decomposition"
Sumit Shekhar|Max Reimann|Maximilian Mayer|Amir Semmo|Sebastian Pasewaldt|Jürgen Döllner|Matthias Trapp
2021EGintrinsic diffuse|optimization|editinghttps://ivpg.hpi3d.de/ipesid/
34
shekhar2018"Light-Field Intrinsic Dataset"
Sumit Shekhar|Shida Beigpour|Matthias Ziegler|Michał Chwesiuk|Dawid Paleń|Karol Myszkowski|Joachim Keinert|Radosław Mantiuk|Piotr Didyk
2018BMVCdatasethttp://lfid.mpi-inf.mpg.de/
35
saini2016"Intrinsic image decomposition using focal stacks"
Saurabh Saini|Parikshit Sakurikar|P J Narayanan
2016ICVGIPintrinsic diffuse|optimization|focal stackinghttps://dl.acm.org/doi/abs/10.1145/3009977.3010046
36
saini2018"Semantic priors for IID"Saurabh Saini|P J Narayanan2018BMVCintrinsic diffuse|optimizationhttp://bmvc2018.org/contents/papers/0796.pdf
37
luo2020
"NIID-Net: Adapting Surface Normal Knowledge for Intrinsic Image Decomposition in Indoor Scenes"
Jundan Luo| Zhaoyang Huang|Yijin Li|Xiaowei Zhou|Guofeng Zhang|Hujun Bao
2020TVCGintrinsic diffuse|neural|normalshttps://github.com/zju3dv/NIID-Net
38
baslamisli2018"Joint Learning of Intrinsic Images and Semantic Segmentation"
Anil S. Baslamisli|Thomas T. Groenestege|Partha Das|Hoang-An Le|Sezer Karaoglu|Theo Gevers
2018ECCVintrinsic diffuse|neural|dataset
https://openaccess.thecvf.com/content_ECCV_2018/papers/Anil_Baslamisli_Joint_Learning_of_ECCV_2018_paper.pdf
39
baslamisli2021"ShadingNet: Image Intrinsics by Fine-Grained Shading Decomposition"
Anil S. Baslamisli|Partha Das|Hoang-An Le|Sezer Karaoglu|Theo Gevers
2021IJCVintrinsic diffuse|neural|global illumination
https://link.springer.com/article/10.1007/s11263-021-01477-5
40
You can add your paper below this row ↓↓↓↓↓ Note that the updates won't be instant
41
Roberts2020
"Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding"
Mike Roberts|Nathan Paczan2020ICCVdatasethttps://github.com/apple/ml-hypersim
42
Paradigms2022"Intrinsic Image Decomposition using Paradigms"D. A. Forsyth|Jason J. Rock2022TPAMIintrinsic diffuse|neuralhttps://ieeexplore.ieee.org/document/9573351
43
meka2016LIV"Live Intrinsic Video"
Abhimitra Meka|Michael Zollhöfer|Christian Richardt|Christian Theobalt
2016SIG
intrinsic diffuse|optimization|editing|live|real-time
https://vcai.mpi-inf.mpg.de/projects/LiveIntrinsicVideo/
44
meka2021realtime"Real-time Global Illumination Decomposition of Videos"
Abhimitra Meka*|Mohammad Shafiei*|Michael Zollhöfer|Christian Richardt|Christian Theobalt
2021TOG
intrinsic diffuse|optimization|global illumination|editing|live|real-time
https://vcai.mpi-inf.mpg.de/projects/LiveIlluminationDecomposition/
45
meka2017live"Live User-Guided Intrinsic Video For Static Scenes"
Abhimitra Meka*|Gereon Fox*|Michael Zollhöfer|Christian Richardt|Christian Theobalt
2017TVCG
intrinsic diffuse|optimization|editing|live|real-time|interactive
https://vcai.mpi-inf.mpg.de/projects/InteractiveIntrinsicAR/
46
careagc2023intrinsic"Intrinsic Image Decomposition via Ordinal Shading"Chris Careaga|Yağız Aksoy2023TOG
intrinsic diffuse|editing|neural|full-supervision|gradients
https://yaksoy.github.io/intrinsic/
https://github.com/compphoto/Intrinsic
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100