ABCDEFGHIJKLMNOPQRSTUVWXYZ
1
2
3
DESIGN OF BEAM
4
5
Design Aid
6
Step 1
7
Input Data for Flexure
8
Characteristic Strength of Concretefc'(N/mm2)32
9
IYield Strength of Steelfy(N/mm2)420I
10
NWidth of Beam bw(mm)250N
11
PDepth of Beam t(mm)700P
12
UCover Depth of Beamd'(mm)50U
13
TEffective Depth of Beamd(mm)650T
14
Ultimate Bending MomentMu(N-mm)1,07E+08
15
Ultimate Axial Force (-ve for Comp. & +ve for Ten.)Nu(N)0,00E+00
16
17
Step 2
18
Calculation of Area of Steel
19
DEccenticitye (mm)NeglectD
20
Ees = e(- or +)t/2(+ or -)d'es (mm)NeglectE
21
SValidation of Programes/d(mm)NeglectS
22
ICombination of Bending Moment and Normal ForceMus (N-mm)1,07E+08I
23
GMus/bd2Rus (N/mm2)1,01E+00G
24
NMax. Nominal Bending Momont without Comp Reinf't
fMn max (N-mm)
777593846,6N
25
Modulus of Elasticity for ReinforcementEs (MPa)200000
26
OThe Constant for Concrete (fc' <= 30MPa) β1 0,8357142857O
27
FPercentage of Balanced Reinforcementρb0,03183673469F
28
Percentage of Maximum Reinforcementρmax0,02387755102
29
FPercentage of Required Reinforcementρ0,002733124812F
30
LPercentage of Minimum Reinforcementρmin0,003367175149L
31
EPercentage of Compression Reinforcementρ'0E
32
XMaximum ReinforcementAs max3880,102041X
33
UMinimum ReinforcementAs min547,1659616U
34
RCalculated Reinforcement As4,44E+02R
35
ERequired ReinforcementAs req547,1659616E
36
Compression ReinforcementAs'0
37
38
Result
39
Design and Check of Deflection in Member
40
DUltimate Moment due to Dead LoadMd (N-mm)40000000D
41
EUltimate Moment due to Live LoadMl (N-mm)20000000E
42
FSpan of Beam l (mm)6000F
43
LSusatained MomentMsus (N-mm)50000000L
44
EUltimate Moment due to Dead + Live LoadMd+l (N-mm)60000000E
45
CGross Moment of Inertia of ConcreteIg (mm4)7145833333C
46
TModulus of Rapture of Concretefr (N/mm2)3,959797975T
47
IDistance from Centroid to Extreme fibre of Steelyt (mm)350I
48
OCracking MomentMcr (N-mm)80845875,32O
49
NCoeff for MI of Cracked SectionKi20,108Refer ACI 318M N
50
Cracked Moment of InertiaIcr (mm4)7414875000Handbook Vol I
51
LCubed Ratio of Cracked to Dead Load Moment(Mcr/Md)38,256455195L
52
ICubed Ratio of Cracked to D+L Load Moment(Mcr/Md+l)32,446357095I
53
VCubed Ratio of Cracked to Suatained Moment(Mcr/Msus)34,22730506V
54
EEffective Moment of Inertia for Dead Load(Ieff)d (mm4)5193544533E
55
Effective Moment of Inertia for Dead + Live Load(Ieff)d+l (mm4)6756703010
56
SEffective Moment of Inertia Sustained(Ieff)sus (mm4)6277553801S
57
HElasticity Modulus of ConcreteEc26587,21497H
58
RDeflection Due to Dead Loadi)d(mm)2,60714865R
59
IDeflection Due to Dead+Live Loadi)d+l(mm)3,005979972I
60
NDeflection Due to Live Loadi)l(mm)0,3988313226N
61
K'Check of Deflection for Live Load(l/180)(mm)33,33333333K'
62
EDeflection Due to Sustained Loadi)sus(mm)2,696182113E
63
Percentage of Reinfoecement at Mid Spanρ'0,0026
64
CDeflection Due to Shrinkage+Creepi)sh+cr(mm)4,772003745+ years = 20C
65
RDeflection Due to Shrinkage+Creepi)sh+cr(mm)3,34040261812 months = 14R
66
EDeflection Due to Shrinkage+Creepi)sh+cr(mm)2,8632022449 months = 12E
67
EDeflection Due to Shrinkage+Creepi)sh+cr(mm)2,6891902193 months = 10E
68
PDeflection forLive Load+Shrinkage+Creep
i)sh+cr+l(mm)
5,170835063MaximumP
69
Check of Deflection for Shrinkage and Creep(l/480)(mm)12,5
70
Step 1
71
Input Data for Shear and TorsionValues
72
Characteristic Strength of Concretefc'(N/mm2)32
73
UCharacteristic Strength of Steel for Stirrupsfyv(N/mm2)240
74
SCharacteristic Strength of Steel for Long'l Reinf'tfyl(N/mm2)420S
75
EWidth of beam bw(mm)250H
76
RDepth of beam t(mm)700E
77
Cover Depth of Beamd'(mm)50A
78
IEffective Depth of Beamd(mm)650R
79
NCover for Width of Beamb'(mm)0Note :
80
PThickness of Flange for "L & T" Beamtf(mm)0
For 'T' Beam bf = 8tf or 2t
A
81
UBreath of Flange for "L & T" Beambf(mm)0
which ever is smaller
N
82
TUltimate Shear StrengthVu(N)2,51E+05
For 'L' Beam bf = 4tf
D
83
Ultimate Torsional Momentτu (N-mm)0,00E+00
84
Ultimate Normal ForceNu (N)0,00E+00T
85
O
86
Step 2R
87
Determination of Effect of Shear and Design of Shear Reinforcement
S
88
SShear Strength of concreteФVc (N)1,30E+05I
89
HCheck for Shear Effect
Shear Reinf't Needed
O
90
ERequired Nominal Shear due to Shear Reinf't ФVs(N)1,21E+05N
91
ACheck for Maximum Shear
Section is Safe for Shear
92
RArea of Shear Reinforment
(Av/s)(mm2/mm)
9,11E-01R
93
E
94
Step 3I
95
Determination of Effect of Torsion and Design of Torsion Reinforcement
N
96
TActual Area of SectionAcp(mm2)175000F
97
OActual Perimeter of SectionPcp(mm)1900O
98
RCheck for Torsional Moment effect
Neglect Torsion Effect
R
99
C
100
ResultE