A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | AA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Titolo | Istututo | Descrizione | Tutor | |||||||||||||||||||||||
2 | Study of IR absorption of gases under planetary conditions | INAF-IAPS | Several existing spectral databases, such as HITRAN, HITEMP, etc., include most of the optical properties of the gases in a planetary atmosphere under different physical conditions. However, they do not yet cover some important information concerning for example the "forbidden" bands of CIA (Collision Induced Absorption), such as those of CO2, or even allowed bands under "extreme" physical conditions, such as very dense atmosphere like Venus, Jupiter or many of the exoplanets discovered. Laboratory techniques that use Fourier spectrometers coupled to multi-pass gas cells and/or CRD (Cavity Ring Down) techniques that use tunable lasers, allow to study the IR transmission properties and to provide important missing data for the databases. This is fundamental to support the remote sensing analysis of the planets in our Solar System or beyond. The work will consist in both measurement and analysis of data, and it will be carried out at the INAF-IAPS laboratories in Rome. | Giuseppe Piccioni | giuseppe.piccioni@inaf.it | ||||||||||||||||||||||
3 | Study of the Venus Atmosphere by means of the VIRTIS-Venus Express data | INAF-IAPS | The VIRTIS (Visible and InfraRed Thermal Imaging Spectrometer) instrument on board the ESA Venus Express mission provided a large data set about Venus. This dataset is still (and will be for many years) unique to study Venus from its spectroscopic properties, from the surface up to the upper atmosphere. The topic of the thesis will be chosen upon the specific interests and competences of the student | Giuseppe Piccioni | giuseppe.piccioni@inaf.it | ||||||||||||||||||||||
4 | Surface composition of Jupiter's icy Galilean moons: Spectral unmixing tests in preparation of the JUICE mission | INAF-IAPS | The key objective of the JUpiter ICy moons Explorer (JUICE) mission, scheduled to launch in 2022, is to perform an in-depth analysis of Jupiter's Galilean moons (in particular Ganymede, Europa and Callisto) by means of several investigations. One of the JUICE instruments is the MAJIS imaging spectrometer, sensitive in the visible and near infrared spectral range 0.5-5.5 µm, which will provide new insight on the surface composition of those moons. The surface composition of the Galilean moons is a mixture of several chemical compounds; but on a regional scale it can be approximated by a linear combination of a limited number of compounds known/suggested from previous investigations and expected by theoretical models. Starting from this assumption, we will apply a so-called "spectral unmixing" technique to evaluate which combinations of spectra are best suited to reproduce the spectral profiles of the moons as measured by previous space missions. For this purpose, we will rely on a database of laboratory measurements relevant to the MAJIS sensitivity range. The results obtained by applying spectral unmixing to those laboratory spectra will prove valuable in the years 2032-2035, when MAJIS data at Jupiter's moons will finally be available, to undertake an in-depth investigation aimed at unveiling and mapping the surface composition of the Galilean moons. | Federico Tosi | federico.tosi@inaf.it | ||||||||||||||||||||||
5 | Characterizing terrestrial analogues of surfaces of solar system bodies | INAF-IAPS | Modern planetary science studies benefit from large amounts of orbital data and the access to the surface of bodies of our Solar System by landed robotic missions. The characterization of terrestrial analogues is fundamental to refine how minerals composing a given surface of a planetary body formed and evolved. Libraries of astro-materials are an important reference for analog studies. However, the natural context where analog materials are sampled is critical to understanding the emplacement processes and their timing. This exercise is at the base of the modeling of the processes of evolution of current and ancient environments on the Earth, which can be extended to the solid surfaces of the planetary bodies where knowledge is limited or fragmented. The exploration of Mars and the Moon by proximate sensing payloads onboard rovers requires new techniques of analysis and hypothesis testing driven by multi-instrument observations at multiple resolutions. Terrestrial analogue studies offer a unique opportunity to maximize the scientific understanding of the huge amount of information which is being made available from planetary missions in this decade. | Francesca Altieri/Alessandro Frigeri | francesca.altieri@inaf.it | ||||||||||||||||||||||
6 | CRISM/MRO data analysis to investigate the presence of carbonates on specific areas of interest on Mars | INAF-IAPS | In this work we propose to analyze the data collected by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard NASA’s Mars Reconnaissance Orbiter (MRO) mission. CRISM is able to acquire images on Mars with a spatial resolution of about 20 meter/pixel and to provide for each pixel in the scene a spectrum from 0.4 to 4 micron with a spectral resolution of about 6.5 nm. In this spectral range, minerals show diagnostic absorptions that can be successfully used to infer the composition of the Martian surface. Carbonates are very interesting materials which detections enable to constrain the role of water in ancient Mars, in particular if environmental conditions favorable for the development of life ever occurred. Their presence has been recently proposed in Oxia Planum, the ExoMars Rover landing site. However carbonate detection in Oxia Planum is debated and further investigations are needed | Francesca Altieri | francesca.altieri@inaf.it | ||||||||||||||||||||||
7 | The persistence and motion of the polar cyclones clusters at Jupiter | INAF-IAPS | Through the analysis of the IR (~5µm) images that JIRAM took at the poles of Jupiter in almost 6 year, the candidate will study the motion of these structure and their persistence, with emphasis on the recurrence of peculiar morphologies | Alessandro Mura | alessandro.mura@inaf.it | ||||||||||||||||||||||
8 | The temporal variability of the main oval aurora at Jupiter | INAF-IAPS | Through the analysis of the IR (~3µm) images that JIRAM took of the emitting auroral H3+, the candidate will study the temporal variability of the aurora, with emphasis on an accurate estimation of the signal intensity via comparison with the spectrometer data | Alessandro Mura | alessandro.mura@inaf.it | ||||||||||||||||||||||
9 | Compilation of spectral library using existing laboratory data | INAF-IAPS | In our labs, we have collected many spectra of samples that are considered as analogues of planetary surface. The collected data should be organized in simple spectral libraries and used for comparison with remote sensing data | Maria Cristina De Sanctis | mariacristina.desanctis@inaf.it | ||||||||||||||||||||||
10 | Comparison of spectral data of organic rich regions on Ceres and other minor bodies | INAF-IAPS | Recent remote sensing data have shown the presence of the organic signature on different bodies. The project is to compare the data trying to infer differences and similarity | Maria Cristina De Sanctis | mariacristina.desanctis@inaf.it | ||||||||||||||||||||||
11 | Water ice on Ceres | INAF-IAPS | The study is to compare the data of the water ice rich regions to infer differences and similarity, trying also to use the band shape to retrieve the ice temperature | Maria Cristina De Sanctis | mariacristina.desanctis@inaf.it | ||||||||||||||||||||||
12 | Arricchimento in elementi volatili del proto-Mercurio per accrescimento di planetesimi nella Nebulosa Solare | INAF-IAPS/Sapienza | Arricchimento in elementi volatili del proto-Mercurio per accrescimento di planetesimi nella Nebulosa Solare | Diego Turrini/Athanasia Nikolaou | diego.turrini@inaf.it | ||||||||||||||||||||||
13 | Dalla stella al pianeta: tracciando l’evoluzione dei sistemi planetari con Ariel | INAF-Arcetri, Firenze | Capire come si formano ed evolvono i pianeti nella nostra Galassia richiede di approfondire il legame tra i pianeti e le loro stelle madre. La caratterizzazione delle stelle, in particolare della loro composizione chimica, è infatti un passaggio essenziale per comprendere meglio la natura dei pianeti che le orbitano. In questo progetto di tesi magistrale, lo studente studierà la relazione tra stelle e pianeti, analizzando come i parametri stellari siano correlati con proprietà planetarie come massa, raggio, molteplicità e caratteristiche orbitali. Il lavoro prevede l’analisi di spettri stellari ad alta risoluzione tramite diverse tecniche, con particolare attenzione alla determinazione dell’abbondanza di elementi chimici rilevanti per la formazione planetaria. I dati utilizzati provengono dalla fase di preparazione scientifica della missione spaziale Ariel, che ha l’obiettivo di studiare le atmosfere dei pianeti extrasolari per ricostruirne l’origine e l’evoluzione. Si tratta di una missione europea con un importante contributo italiano. Lo studente lavorerà in un contesto internazionale, partecipando alle attività del gruppo di lavoro sulla Caratterizzazione Stellare (Stellar Characterisation Working Group, vedi link di seguito), contribuendo così agli obiettivi scientifici della missione. [link for the website: https://sites.google.com/inaf.it/arielstellarcatalogue/objectives ] | Maria Tsantaki and Camilla Danielski | maria.tsantaki@inaf.it | ||||||||||||||||||||||
14 | Study of the ice on terrestrial planets, asteroids and satellites by means of remote sensing spectroscopy, laboratory analogues and thermophysical modelling | INAF-IAPS | Water ice exists throughout the solar system, from Mercury, the planet closest to the sun, to the far outer solar system bodies. In the innermost solar system, ice occurs as polar caps and permafrost and may persist inside the coldest, darkest craters at the poles of otherwise rocky bodies. There are several origins of the ice, that may be ancient, present since the birth of the solar system, or young, recently condensed from gas phases. In recent years, many attempts have been made in order to characterise the ice in the solar system, on the polar regions of the terrestrial planets and on asteroids. Our knowledge about that has been improved thanks to the data from recent space missions, laboratory analogues, and theoretical modelling. In this project we will conduct a study of the spectral characteristics of ices on planetary surfaces with support from radiative transfer and thermophysical models to understand their origins, stability and formation processes. | Francesca Altieri/Maria Cristina De Snctis | francesca.altieri@inaf.it | ||||||||||||||||||||||
15 | |||||||||||||||||||||||||||
16 | |||||||||||||||||||||||||||
17 | |||||||||||||||||||||||||||
18 | |||||||||||||||||||||||||||
19 | |||||||||||||||||||||||||||
20 | |||||||||||||||||||||||||||
21 | |||||||||||||||||||||||||||
22 | |||||||||||||||||||||||||||
23 | |||||||||||||||||||||||||||
24 | |||||||||||||||||||||||||||
25 | |||||||||||||||||||||||||||
26 | |||||||||||||||||||||||||||
27 | |||||||||||||||||||||||||||
28 | |||||||||||||||||||||||||||
29 | |||||||||||||||||||||||||||
30 | |||||||||||||||||||||||||||
31 | |||||||||||||||||||||||||||
32 | |||||||||||||||||||||||||||
33 | |||||||||||||||||||||||||||
34 | |||||||||||||||||||||||||||
35 | |||||||||||||||||||||||||||
36 | |||||||||||||||||||||||||||
37 | |||||||||||||||||||||||||||
38 | |||||||||||||||||||||||||||
39 | |||||||||||||||||||||||||||
40 | |||||||||||||||||||||||||||
41 | |||||||||||||||||||||||||||
42 | |||||||||||||||||||||||||||
43 | |||||||||||||||||||||||||||
44 | |||||||||||||||||||||||||||
45 | |||||||||||||||||||||||||||
46 | |||||||||||||||||||||||||||
47 | |||||||||||||||||||||||||||
48 | |||||||||||||||||||||||||||
49 | |||||||||||||||||||||||||||
50 | |||||||||||||||||||||||||||
51 | |||||||||||||||||||||||||||
52 | |||||||||||||||||||||||||||
53 | |||||||||||||||||||||||||||
54 | |||||||||||||||||||||||||||
55 | |||||||||||||||||||||||||||
56 | |||||||||||||||||||||||||||
57 | |||||||||||||||||||||||||||
58 | |||||||||||||||||||||||||||
59 | |||||||||||||||||||||||||||
60 | |||||||||||||||||||||||||||
61 | |||||||||||||||||||||||||||
62 | |||||||||||||||||||||||||||
63 | |||||||||||||||||||||||||||
64 | |||||||||||||||||||||||||||
65 | |||||||||||||||||||||||||||
66 | |||||||||||||||||||||||||||
67 | |||||||||||||||||||||||||||
68 | |||||||||||||||||||||||||||
69 | |||||||||||||||||||||||||||
70 | |||||||||||||||||||||||||||
71 | |||||||||||||||||||||||||||
72 | |||||||||||||||||||||||||||
73 | |||||||||||||||||||||||||||
74 | |||||||||||||||||||||||||||
75 | |||||||||||||||||||||||||||
76 | |||||||||||||||||||||||||||
77 | |||||||||||||||||||||||||||
78 | |||||||||||||||||||||||||||
79 | |||||||||||||||||||||||||||
80 | |||||||||||||||||||||||||||
81 | |||||||||||||||||||||||||||
82 | |||||||||||||||||||||||||||
83 | |||||||||||||||||||||||||||
84 | |||||||||||||||||||||||||||
85 | |||||||||||||||||||||||||||
86 | |||||||||||||||||||||||||||
87 | |||||||||||||||||||||||||||
88 | |||||||||||||||||||||||||||
89 | |||||||||||||||||||||||||||
90 | |||||||||||||||||||||||||||
91 | |||||||||||||||||||||||||||
92 | |||||||||||||||||||||||||||
93 | |||||||||||||||||||||||||||
94 | |||||||||||||||||||||||||||
95 | |||||||||||||||||||||||||||
96 | |||||||||||||||||||||||||||
97 | |||||||||||||||||||||||||||
98 | |||||||||||||||||||||||||||
99 | |||||||||||||||||||||||||||
100 |