e —— = —
o s
oy b
o e
ot e e e
sty e —————
et
s
o . sy [
o) e oo
e e .
o e sy
o) v o

—

ity

iy
e

e s

]

Proposed primitives
- Goal: clear, near-universal meta-language for expressing algorithms. Ideally, both human-readable and machine-readabl in consistency and clarity.
- Suggest starting with JtR's as a base - it's clear and stable

Token
$p

$s
truncX
utf16le
base64
rev

uc

lc
substr

hmac

cube

des
descrypt
echo

edon
fugue224
fugue256
fugue384
fugue512
gost
groestl
hamsi
haval128
haval160
haval192
haval224
ih

keccak

Im

Iuffa

md2

md4

md5
mongo
mysql5
ntim
panama
pbkdf2
radmin2
ripemd128
ripemd160
ripemd256
ripemd320
scrypt
sha0

sha1l
sha224
sha256
sha256crypt
sha384
sha512
sha512crypt
shavite
skein
snefru128
snefru256
tiger128
tiger160
tiger192
whirlpool

Type

literal

literal

function
function
function
function
function
function
function

meta-function
meta-function
meta-function
meta-function
meta-function
meta-function

meta-function

core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo
core algo

Description
password

salt

truncate to length X
utf16le

base64 encode
reverse
uppercase,cap
lowercase

Hex encoded
human

Aliases
$pass, Splain
$salt
truncate,chop

base64_encode
reverse,str_reverse strrev
toupper,strtoupper
tolower,strtolower

sub

dummy

Example

Comment

Maybe a single primitive that accepts a value, rather than one primitive per truncation length? The latter would be more flexible, but might be less readable.

bit order? (bcad, etc.)
that the item specified is expressed as hex
trailing newlines, etc?

no-op

Other rosettas
https://mattw.io/hashlD/types

Rules rosetta

https://docs.google.com/spreadsheets/d/1vDQWg-eZplEScs7sF4m3eJCEGq3bmmifHsLGL73n4lg

Good refs

https://miloserdov.org/?p=5960
-form=dynamic="EXPRESSION'

Other suites (for potential inclusion someday)
Passware

Elcomsoft https://www.elcomsoft.com/edpr.html

Last updated 2023-05-04

https://mattw.io/hashID/types
https://docs.google.com/spreadsheets/d/1vDQWg-eZplEScs7sF4m3eJCEGq3bmmifHsLGL73n4Ig
https://miloserdov.org/?p=5960
https://support.passware.com/hc/en-us/articles/5373220102423-What-hash-types-are-supported-in-Passware-Kit-
https://www.elcomsoft.com/edpr.html

[1] needs to be run with -i2

[2] this algorithm techincally tests two variants

[3] this algorithm tests for three variants

[4] this algorithm tests for three variants

[5] this algorithm tests for three variants

[6] this algorithm tests for three variants

[7] this algorithm tests for three variants

[8] this algorithm tests for three variants

[9] this algorithm tests for three variants

[10] this algorithm tests for three variants

[11] this algorithm tests for three variants

[12] this algorithm tests for three variants

[13] this algorithm tests for three variants

[14] this algorithm tests for three variants

[15] this algorithm tests for three variants

[16] this algorithm tests for three variants

[17] this algorithm tests for three variants

[18] NOTE: This algorithm is the same like md5(mysql5($plain))
[19] bug in current MDXfind release for this algorithm. Fix is known but not released yet.
[20] this algorithm tests for two variants

[21] this algorithm tests for two
variants

[22] this algorithm tests for two
variants

[23] this algorithm tests for two
variants

[24] coming soon
[25] key = $salt
[26] key = $salt

[27] this algorithm tests for two
variants

[28] this algorithm tests for two
variants

[29] this algorithm tests for two
variants

[30] this algorithm tests for two
variants

[31] this algorithm tests for two
variants

[32] this algorithm tests for two
variants

[33] this algorithm tests for two
variants

[34] this algorithm tests for two
variants

[35] just taking the userid as salt

[36] just taking the userid as salt

[37] this algorithm checks for five variants
[38] this algorithm checks for five variants
[39] this algorithm checks for five variants
[40] this algorithm checks for five variants
[41] this algorithm checks for five variants
[42] this algorithm checks for three variants
[43] this algorithm checks for three variants
[44] this algorithm checks for three variants
[45] this algorithm checks for five variants
[46] this algorithm checks for five variants
[47] this algorithm checks for five variants
[48] this algorithm checks for five variants
[49] this algorithm checks for five variants
[50] this algorithm checks for five variants
[51] this algorithm checks for five variants

[52] this algorithm checks for five variants

[563] this algorithm checks for five variants

[54] this algorithm checks for five variants

[55] this algorithm checks for two variants

[56] this algorithm checks for two variants

[57] bug in current MDXfind release for this algorithm. Fix is known but not released yet.
[58] bug in current MDXfind release for this algorithm. Fix is known but not released yet.
[59] bug in current MDXfind release for this algorithm. Fix is known but not released yet.
[60] this algorithm checks for five variants

[61] this algorithm checks for five variants

[62] this algorithm checks for five variants

[63] this algorithm checks for five variants

[64] this algorithm checks for five variants

[65] this algorithm checks for two variants

[66] this algorithm checks for two variants

[67] this algorithm checks for five variants

[68] this algorithm checks for five variants

[69] this algorithm checks for five variants

[70] this algorithm checks for five variants

[71] this algorithm checks for five variants

[72] this algorithm tests as many combinations as chars in the plain (up to 8)

[73] this algorithm tests as many combinations as chars in the plain (up to 8)

[74] this algorithm tests as many combinations as chars in the plain (up to 8)

[75] this algorithm tests as many combinations as chars in the plain (up to 8)

[76] this algorithm tests as many combinations as chars in the plain (up to 8)

[77] this algorithm tests as many combinations as chars in the plain (up to 8)

[78] this algorithm tests as many combinations as chars in the plain (up to 8)

[79] this algorithm tests as many combinations as chars in the plain (up to 8)

[80] bug in current MDXfind release for this algorithm. Fix is known but not released yet.

[81] this algorithm tests for eight variants

[82] this algorithm tests for eight variants
[83] this algorithm tests for eight variants
[84] this algorithm tests for eight variants
[85] this algorithm tests for eight variants
[86] this algorithm tests for eight variants
[87] this algorithm tests for eight variants
[88] this algorithm tests for eight variants
[89] this algorithm tests for five variants
[90] this algorithm tests for five variants
[91] this algorithm tests for five variants
[92] this algorithm tests for five variants
[93] this algorithm tests for five variants
[94] this algorithm tests for five variants
[95] this algorithm tests for five variants
[96] this algorithm tests for five variants
[97] this algorithm tests for five variants
[98] this algorithm tests for five variants
[99] this algorithm tests for five variants
[100] this algorithm tests for five variants
[101] this algorithm tests for five variants
[102] this algorithm tests for five variants
[103] this algorithm tests for five variants
[104] NOTE: RO13 is not the ROT modification from hashes.org
[105] this algorithm tests for three variants
[106] this algorithm tests for three variants
[107] this algorithm tests for three variants
[108] this algorithm tests for three variants
[109] this algorithm tests for three variants

[110] this algorithm tests for three variants

[111] note that CAP might not have any effect
[112] this algorithm tests for two variants
[113] this algorithm tests for two variants
[114] this algorithm tests for two variants
[115] this algorithm tests for two variants
[116] this algorithm tests for two variants
[117] this algorithm tests for two variants

[118] NOTE: the number in the salt denotes how many times MD5 is applied, but this would lead to other
algorithms on hashes.org

[119] this algorithm tests for 16 variations

[120] NOTE: the variations appear to use different combinations of salts with blank characters, such as
newlines, carriage return characters and NULLs

[121] this algorithm tests for 16 variations

[122] NOTE: the variations appear to use different combinations of salts with blank characters, such as
newlines, carriage return characters and NULLs

[123] this algorithm tests for 16 variations

[124] NOTE: the variations appear to use different combinations of salts with blank characters, such as
newlines, carriage return characters and NULLs

[125] this algorithm tests for 16 variations

[126] NOTE: the variations appear to use different combinations of salts with blank characters, such as
newlines, carriage return characters and NULLs

[127] this algorithm tests for 16 variations

[128] NOTE: the variations appear to use different combinations of salts with blank characters, such as
newlines, carriage return characters and NULLs

[129] this algorithm tests for 16 variations

[130] NOTE: the variations appear to use different combinations of salts with blank characters, such as
newlines, carriage return characters and NULLs

[131] this algorithm tests for 16 variations

[132] NOTE: the variations appear to use different combinations of salts with blank characters, such as
newlines, carriage return characters and NULLs

[133] this algorithm tests for 16 variations

[134] NOTE: the variations appear to use different combinations of salts with blank characters, such as
newlines, carriage return characters and NULLs

[135] this algorithm tests for 16 variations

[136] NOTE: the variations appear to use different combinations of salts with blank characters, such as
newlines, carriage return characters and NULLs

[137] this algorithm tests for 16 variations

[138] NOTE: the variations appear to use different combinations of salts with blank characters, such as
newlines, carriage return characters and NULLs

[139] this algorithm tests for 16 variations

[140] NOTE: the variations appear to use different combinations of salts with blank characters, such as
newlines, carriage return characters and NULLs

[141] this algorithm tests for 16 variations

[142] NOTE: the variations appear to use different combinations of salts with blank characters, such as
newlines, carriage return characters and NULLs

[143] this algorithm tests for 16 variations

[144] NOTE: the variations appear to use different combinations of salts with blank characters, such as
newlines, carriage return characters and NULLs

[145] this algorithm tests for 16 variations

[146] NOTE: the variations appear to use different combinations of salts with blank characters, such as
newlines, carriage return characters and NULLs

[147] this algorithm tests for 16 variations

[148] NOTE: the variations appear to use different combinations of salts with blank characters, such as
newlines, carriage return characters and NULLs

[149] this algorithm tests for 16 variations

[150] NOTE: the variations appear to use different combinations of salts with blank characters, such as
newlines, carriage return characters and NULLs

