A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | AA | AB | AC | AD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ||||||||||||||||||||||||||||||
2 | Mathematics: Grade 6 | |||||||||||||||||||||||||||||
3 | ||||||||||||||||||||||||||||||
4 | Go Home | G6 WM MCAS Approved Math Supplemental Reference Sheet | 📽 Vocabulary Development with Naming Support | |||||||||||||||||||||||||||
5 | Planning Grid (Gantt Chart) | MCAS Grade 6 Mathematics Reference Sheet | Grade 6 Graphic Organizers | Grade 5-6 BASI test Prep | Grade 6 Progress Monitoring Sample Test | General Process Template. | Tier 2 &3 Math Vocabulary by Grade | G6 Math Visual Prompts | G2-8 Visual Prompts | coor | ||||||||||||||||||||
6 | Sequence instruction by academic quarter. | Key: | ||||||||||||||||||||||||||||
7 | Indicate when you are introducing a skill by flagging the appropriate quarter green. | • Click +/- signs in the far-left margin to view skills within each topic. • Each cell is a link to the worksheet(s) or slide presentation. Hover over the cell to see the link, then click to open. • Skills progress from easiest to most difficult, from left to right. • Blue cells indicate that this is a priority skill for this grade level. • Cells with matching border colors are related (like a video demonstration 📽). • Make yourself a copy of this spreadsheet and use the Gantt chart to mark your progression through the curriculum. • Note: New materials are frequently added to this spreadsheet. Check back regularly to see what's new. New items can be copied and pasted into your personal copy. | ||||||||||||||||||||||||||||
8 | Flag the skill red when students are practicing the skill on independent assignments (homework). | |||||||||||||||||||||||||||||
9 | Sample Grade 6 Yearly Plan Scope and Sequence | |||||||||||||||||||||||||||||
10 | Q1 Aug-Nov | Q2 Dec-Mar | Q3 Mar- June | Trimester | ||||||||||||||||||||||||||
11 | Q1 Sep-Oct | Q2 Nov-Jan | Q3 Feb-Mar | Q4 Apr -Jun | The Number System | |||||||||||||||||||||||||
12 | B. Compute fluently with multi-digit numbers and find common factors and multiples. | |||||||||||||||||||||||||||||
13 | 6.NS.3 | Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation. | MULTIDIGIT MULTIPLICATION AND DIVISION FILES | |||||||||||||||||||||||||||
14 | 📽 Tactile Currency Value Video | Add Decimal Fractions and decimals relating to money in Tandem | Encode Decimal Fractions | 📽 Box Dollars, Shade Penny Instructional Video | Add and subtract Pure currency amounts | Place decimal point within numbers then add numbers | Round decimals to 1s 10ths or 100ths | Buy 3 things and find change | ||||||||||||||||||||||
15 | Tactile Currency Value | Multiplication and Division Facts | Multidigit Multiplication and Division Links | 6.N.3 Add decimal numbers using a graphic organizer "Box dollar shade penny" | Place decimal point within numbers then add numbers | |||||||||||||||||||||||||
16 | ||||||||||||||||||||||||||||||
17 | 6.N.3 Multiply whole numbers by 1/2 three Ways: | 6.N.3 Multiply whole numbers by 1/10 three ways | 6.N.3 Multiply whole numbers by 1/4 three ways | 6.N.3 Multiply whole numbers by 1/5 three ways | 6.NS.3 Divide Decimal Dividends (money) by Whole Number Divisors S4 | 6.NS.3 2-digit divisors 3-digit decimal dividends LC and √ | 6 NS.3 Divide Currency by Coin Values Semiconcrete to Abstract | 📽 Up-Front Estimation of Products Involving Decimals Video Examples | ||||||||||||||||||||||
18 | Fish Bucks Thematic Unit and Game | Solve Various Word Problems Using Graphic Organizer Templates | Holiday Shopping Spend 1000 Game: Manual and Electronic Spreadsheet | Multiply Decimals >1 Through Estimation with Whole Numbers | Multiply Decimal Numbers with Benchmarks 6.Ns.3 | Up-Front Estimation of Products Involving Decimals 5.NBT.B.5 | Mixed Decimal Problems | |||||||||||||||||||||||
19 | ||||||||||||||||||||||||||||||
20 | 6.NS.2 | Fluently divide multi-digit numbers using the standard algorithm. | 6.NS.2 Divide Multidigit Numbers MCAS Questions | |||||||||||||||||||||||||||
21 | 📽 Woodin Ladder Chart Instructional Video | Color Coded Ladder Chart with Divisibility Rule References | Small Color Ladder Charts with Divisibility Rule References | |||||||||||||||||||||||||||
22 | Semantic Division | Division Icon Steps and Poster | Divide by 2 With Fractional Remainder Scaffolded Facts | Divide by 5 With Fractional Remainder Scaffolded Facts | Divide by 9 With Fractional Remainder Scaffolded Facts | Single-Digit Divisor Multi-Step Division Slides Template | 2dx2d and related LC Division Problems | 2-digit divisors 3-digit dividends LC and √ | ||||||||||||||||||||||
23 | 📽 Use shoes as manipulatives to learn division by 2 with a fractional remainder | 5x Clock-Based division with a remainder | Scaffolded 2-step Long Division Problems | Scaffolded 2-step division Slides series | Mixed Multiplication and Division Computation With Diminishing Structure | Alternate Whole-to-Part Division | ||||||||||||||||||||||||
24 | ||||||||||||||||||||||||||||||
25 | ||||||||||||||||||||||||||||||
26 | 6.NS.4 | Use prime factorization to find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers 1–100 with a common factor as a multiple of a sum of two relatively prime numbers. For example, express 36 + 8 as 4(9 + 2). | 6.NS.4 Greatest Common Factor MCAS Questions | |||||||||||||||||||||||||||
27 | Snap Cube Factoring | LCM GCF Factoring PDF | 📽 LCM GCF Venn Diagram Video | LCM GCF Venn Diagram Factoring Slides | 📽 Pendulum LCM Video | Pendulums | ||||||||||||||||||||||||
28 | Factor numbers with a dynamic area model | 📽 Factor numbers with a dynamic area model video | ||||||||||||||||||||||||||||
29 | ||||||||||||||||||||||||||||||
30 | ||||||||||||||||||||||||||||||
31 | ||||||||||||||||||||||||||||||
32 | A. Apply and extend previous understandings of multiplication and division to divide fractions by fractions. | |||||||||||||||||||||||||||||
33 | 6.NS.1 | Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for (2∕3)/(3∕4) and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that (2∕3)/(3∕4) = 8∕9because 3∕4 of 8∕9 is 2∕3. In general, (a∕b)/(c∕d) = ad∕bc. How much chocolate will each person get if three people share 1∕2 lb. of chocolate equally? How many 3∕4-cup servings are in 2∕3 of a cup of yogurt? How wide is a rectangular strip of land with length 3∕4 mile and area 1∕2 square mile? | 6.NS.1 Divide Fractions MCAS Questions | |||||||||||||||||||||||||||
34 | Divide Fractions Using Semantic Cues to Predict Quotients. | 4.MD.A.2 Whole # dimension x mixed # dimension- area model | 1 Inch Grid Paper Template for finding areas with mixed Numbers | Multiply a Mixed # by a half | Divide Unit Fractions and Whole Numbers 5.NF.B.6 | 4 Operation Fraction Classification and Dictation | ||||||||||||||||||||||||
35 | ||||||||||||||||||||||||||||||
36 | ||||||||||||||||||||||||||||||
37 | ||||||||||||||||||||||||||||||
38 | ||||||||||||||||||||||||||||||
39 | C. Apply and extend previous understandings of numbers to the system of rational numbers. | |||||||||||||||||||||||||||||
40 | 6.NS.5 | Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, and positive/negative electric charge). Use positive and negative numbers (whole numbers, fractions, and decimals) to represent quantities in real-world contexts, explaining the meaning of zero in each situation. | ||||||||||||||||||||||||||||
41 | Plot Integers on Number Lines | 6.NS.5 Encode or Diagram Single Integer Terms | 6.NS.5 Combine Two Integers with Numbers and Red/Blue Models | Word Problems involving Integers | ||||||||||||||||||||||||||
42 | 6.NS.5 NonSymbolic to Symbolic Integer Combinations | 📽 Combine Integers Movie | ||||||||||||||||||||||||||||
43 | ||||||||||||||||||||||||||||||
44 | ||||||||||||||||||||||||||||||
45 | ||||||||||||||||||||||||||||||
46 | 6.NS.6 | Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates. | 6.NS.6 Number line and Coordinate Plane MCAS Questions | |||||||||||||||||||||||||||
47 | 📽 Kinesthetic Line plot of fractions 1/2 and 4ths internal reference frame | 📽 Kinesthetic Line plot of fractions within an inch external reference frame | Plot diagrams and fractions on number line | Find Mixed Numbers on Ruler Diagrams | ||||||||||||||||||||||||||
48 | ||||||||||||||||||||||||||||||
49 | ||||||||||||||||||||||||||||||
50 | ||||||||||||||||||||||||||||||
51 | ||||||||||||||||||||||||||||||
52 | 6.NS.6.a | Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., –(–3) = 3, and that zero is its own opposite. | ||||||||||||||||||||||||||||
53 | Plot Integers on Number Lines | 6.Ns.6.a Plot Integers on Horizontal Vertical # Lines and Coordinate Plane | ||||||||||||||||||||||||||||
54 | ||||||||||||||||||||||||||||||
55 | ||||||||||||||||||||||||||||||
56 | ||||||||||||||||||||||||||||||
57 | ||||||||||||||||||||||||||||||
58 | 6.NS.6b, 6.NS.6c, and 6.NS.8 can be found under Geometry below. | |||||||||||||||||||||||||||||
59 | ||||||||||||||||||||||||||||||
60 | 6.NS.7 | Understand ordering and absolute value of rational numbers. | 6.NS.C.7 MCAS Ordering and Absolute Value Exam Questions | |||||||||||||||||||||||||||
61 | ||||||||||||||||||||||||||||||
62 | ||||||||||||||||||||||||||||||
63 | ||||||||||||||||||||||||||||||
64 | ||||||||||||||||||||||||||||||
65 | ||||||||||||||||||||||||||||||
66 | 6.NS.7a | a. Interpret statements of inequality as statements about the relative positions of two numbers on a number line diagram. For example, interpret -3 > -7 as a statement that -3 is located to the right of -7 on a number line oriented from left to right. | ||||||||||||||||||||||||||||
67 | Plot, then Order Integers with Inequality Symbols | Plot, then Order Integers with Inequality Symbols v2 (slides) | ||||||||||||||||||||||||||||
68 | ||||||||||||||||||||||||||||||
69 | ||||||||||||||||||||||||||||||
70 | ||||||||||||||||||||||||||||||
71 | ||||||||||||||||||||||||||||||
72 | 6.NS.7b | b. Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write –3°C > –7°C to express the fact that –3°C is warmer than –7°C. | ||||||||||||||||||||||||||||
73 | Plot, then order Real World Integers | |||||||||||||||||||||||||||||
74 | ||||||||||||||||||||||||||||||
75 | ||||||||||||||||||||||||||||||
76 | ||||||||||||||||||||||||||||||
77 | ||||||||||||||||||||||||||||||
78 | 6.NS.7c | c. Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of –30 dollars, write |–30| = 30 to describe the size of the debt in dollars. | ||||||||||||||||||||||||||||
79 | ||||||||||||||||||||||||||||||
80 | ||||||||||||||||||||||||||||||
81 | ||||||||||||||||||||||||||||||
82 | ||||||||||||||||||||||||||||||
83 | ||||||||||||||||||||||||||||||
84 | 6.NS.7d | d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than –30 dollars represents a debt greater than 30 dollars. | ||||||||||||||||||||||||||||
85 | ||||||||||||||||||||||||||||||
86 | ||||||||||||||||||||||||||||||
87 | 6.NS.8 can be found under Geometry below. | |||||||||||||||||||||||||||||
88 | ||||||||||||||||||||||||||||||
89 | Q1 Sep-Oct | Q2 Nov-Jan | Q3 Feb-Mar | Q4 Apr -Jun | Ratios and Proportional Relationships | |||||||||||||||||||||||||
90 | A. Understand ratio and rate concepts and use ratio and rate reasoning to solve problems. | |||||||||||||||||||||||||||||
91 | 6.RP.1 | Understand the concept of a ratio including the distinctions between part:part and part:whole and the value of a ratio; part/part and part/whole. Use ratio language to describe a ratio relationship between two quantities. For example, The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every two wings there was one beak; For every vote candidate A received, candidate C received nearly three votes, meaning that candidate C received three out of every four votes or 3/4 of all votes. | 6.RP1a MCAS Ratio Concept Problems | |||||||||||||||||||||||||||
92 | Simplifying Ratios Worksheet | |||||||||||||||||||||||||||||
93 | ||||||||||||||||||||||||||||||
94 | ||||||||||||||||||||||||||||||
95 | ||||||||||||||||||||||||||||||
96 | ||||||||||||||||||||||||||||||
97 | 6.RP.2 | Understand the concept of a unit rate a/b associated with a ratio a:b with b≠0, and use rate language in the context of a ratio relationship, including the use of units. For example, This recipe has a ratio of three cups of flour to four cups of sugar, so there is 3⁄4 cup of flour for each cup of sugar; We paid $75 for 15 hamburgers, which is a rate of five dollars per hamburger. (Expectations for unit rates in this grade are limited to non-complex fractions.) | 6.RP2a MCAS Unit Rate Problems | |||||||||||||||||||||||||||
98 | Unit Rate introduction Worksheet series | |||||||||||||||||||||||||||||
99 | ||||||||||||||||||||||||||||||
100 |