A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

1 | Students only need to stay until they are completed with 100% of their Learning Targets not mastered for the given semester | |||||||||||||||||

2 | This means that they student needs to master this standand. When they Master a topic delete it from there column. | x | ||||||||||||||||

3 | S1 ONLY | S1 ONLY | S1 ONLY | S1 ONLY | BOTH | BOTH | S2 ONLY | S2 ONLY | S2 ONLY | S2 ONLY | S2 ONLY | S2 ONLY | S2 ONLY | |||||

4 | Carapia, Fernando | Gutierrez, Elvis | Mejia Diaz, Wendy | Merino, Julissa | Obeso, Jonathan | Burciaga, Antonio | Rodriguez, Angel | Gonzalez, Cristian | Segura- Martinez, Alex | Brito, Miguel | Ortega Briceno, Adriel | Nunez, Mia | Cervantes, Kimberly | |||||

5 | 1 | BoG1 I can define, identify or construct key Geometry terms and postulates (Point, Line, and Plane, Segment and Ray, Intersections of Lines and Planes) | ||||||||||||||||

6 | 2 | BoG2 I can define, identify or construct key Geometry terms and postulates (Ruler Postulate,Segment Addition Postulate, The Distance Formula, Congruent Segments) | X | X | X | |||||||||||||

7 | 3 | BoG3 I can define, identify or construct key Geometry terms and postulates (Midpoints and Segment Bisectors, Partitioning a Segment on a Number Line, Midpoint of a Segment in a Coordinate Plane) | X | |||||||||||||||

8 | 4 | BoG4 I can define, identify or construct key Geometry terms and postulates (Classifying Polygons, Finding Perimeter and Area in the Coordinate Plane) | X | |||||||||||||||

9 | 5 | BoG5 I can define, identify or construct key Geometry terms and postulates (Protractor Postulate,Types of Angles, Angle Addition Postulate, Bisecting Angles) | X | |||||||||||||||

10 | 6 | BoG6 I can define, identify or construct key Geometry terms and postulates (Complementary and Supplementary Angles, Adjacent Angles, Linear Pairs and Vertical Angles) | X | |||||||||||||||

11 | 7 | PP1 I can identify and define parallel and perpendicular lines | X | X | X | |||||||||||||

12 | 8 | PP2 I can identify the types of angles created by two parallel lines cut by a transversal and which are congruent and use these to solve problems | X | X | X | |||||||||||||

13 | 9 | PP3 I can construct and solve proofs involving two parallel lines | X | X | ||||||||||||||

14 | 10 | PP4 I can determine if a two lines are perpendicular or parallel | X | X | X | |||||||||||||

15 | 11 | PP5 I can write the equations of parallel and perpendicular lines | X | X | X | |||||||||||||

16 | 12 | QP1 I can find the interior and exterior angles of a polygon | ||||||||||||||||

17 | 13 | QP2 I can find the side lengths and angles of a parallelogram | X | |||||||||||||||

18 | 14 | QP4 I can identify and use properties of a rhombus, square and a rectangle | X | X | ||||||||||||||

19 | 15 | QP5 I can prove that a quadrilateral is a rhombus, square or rectangle (in the coordinate plane or otherwise) | X | X | X | |||||||||||||

20 | 16 | QP6 I can identify and use properties of a kite and a trapezoid | X | X | X | |||||||||||||

21 | 17 | QP8 I can find the area of quadrilaterals and polygons | X | X | X | |||||||||||||

22 | 18 | RP1 I can write and interpret conditional statements including negations, converses, and contrapositives | X | |||||||||||||||

23 | 19 | RP2 I can identify and write examples of inductive and deductive reasoning including using counterexamples. | X | |||||||||||||||

24 | 20 | RP5 I can write a two column proof using or paragraph proof using: the Right Angles Congruence Theorem, the Congruent Supplements Theorem, the Congruent Complements Theorem, the Linear Pair Postulate, and the Vertical Angles Congruence Theorem | X | X | X | X | X | X | ||||||||||

25 | 21 | T1 I can apply and describe translations | X | X | X | X | X | |||||||||||

26 | 22 | T2 I can apply and describe reflections | X | X | X | X | X | X | ||||||||||

27 | 23 | T3 I can apply and describe rotations | X | X | X | X | X | |||||||||||

28 | 24 | T4 I can apply and describe a dilation and similarities | X | X | X | X | X | |||||||||||

29 | 25 | RT1 I can use the perpendicular bisector theorem to prove and solve for lengths of triangles | X | X | X | |||||||||||||

30 | 26 | QP3 I can prove that a quadrilateral is a parallelogram (in the coordinate plane or otherwise) | X | X | X | X | X | X | X | |||||||||

31 | 27 | QP7 I can prove that a quadrilateral is a kite or a trapezoid (in the coordinate plane or otherwise) | X | X | X | X | X | X | ||||||||||

32 | 28 | S2 I can prove triangle similarity by SSS, AA and SAS | X | X | X | X | X | X | ||||||||||

33 | 29 | S3 I can use the Triangle Proportionality Theorem to prove and solve for lengths of triangles | X | X | X | X | X | X | ||||||||||

34 | 30 | RTT1 I can use the PythagoreanTheorem to find the length of right triangles | X | X | X | X | X | X | ||||||||||

35 | 31 | RTT2 I can find the side measures of right triangles using trigonometric ratios (sine, cosine, tangent) | X | X | ||||||||||||||

36 | 32 | RTT3 I can find the angle of a right triangle using arcsine, arccosine and arctangent. | X | X | X | X | X | |||||||||||

37 | Number of Standards Mastered | 32 | 32 | 32 | 32 | 16 | 8 | 17 | 23 | 28 | 32 | 20 | 18 | 23 | ||||

38 | Total Standards Needed: Goal, get to ZERO! | 0 | 0 | 0 | 0 | 16 | 24 | 15 | 9 | 4 | 0 | 12 | 14 | 9 | ||||

39 | Carapia, Fernando | Gutierrez, Elvis | Mejia Diaz, Wendy | Merino, Julissa | Obeso, Jonathan | Burciaga, Antonio | Rodriguez, Angel | Gonzalez, Cristian | Segura- Martinez, Alex | Brito, Miguel | Ortega Briceno, Adriel | Nunez, Mia | Cervantes, Kimberly | |||||

40 | ||||||||||||||||||

41 | ||||||||||||||||||

42 | ||||||||||||||||||

43 | ||||||||||||||||||

44 | ||||||||||||||||||

45 | ||||||||||||||||||

46 | ||||||||||||||||||

47 | ||||||||||||||||||

48 | ||||||||||||||||||

49 | ||||||||||||||||||

50 | ||||||||||||||||||

51 | ||||||||||||||||||

52 | ||||||||||||||||||

53 | ||||||||||||||||||

54 | ||||||||||||||||||

55 | ||||||||||||||||||

56 | ||||||||||||||||||

57 | ||||||||||||||||||

58 | ||||||||||||||||||

59 | ||||||||||||||||||

60 | ||||||||||||||||||

61 | ||||||||||||||||||

62 | ||||||||||||||||||

63 | ||||||||||||||||||

64 | ||||||||||||||||||

65 | ||||||||||||||||||

66 | ||||||||||||||||||

67 | ||||||||||||||||||

68 | ||||||||||||||||||

69 | ||||||||||||||||||

70 | ||||||||||||||||||

71 | ||||||||||||||||||

72 | ||||||||||||||||||

73 | ||||||||||||||||||

74 | ||||||||||||||||||

75 | ||||||||||||||||||

76 | ||||||||||||||||||

77 | ||||||||||||||||||

78 | ||||||||||||||||||

79 | ||||||||||||||||||

80 | ||||||||||||||||||

81 | ||||||||||||||||||

82 | ||||||||||||||||||

83 | ||||||||||||||||||

84 | ||||||||||||||||||

85 | ||||||||||||||||||

86 | ||||||||||||||||||

87 | ||||||||||||||||||

88 | ||||||||||||||||||

89 | ||||||||||||||||||

90 | ||||||||||||||||||

91 | ||||||||||||||||||

92 | ||||||||||||||||||

93 | ||||||||||||||||||

94 | ||||||||||||||||||

95 | ||||||||||||||||||

96 | ||||||||||||||||||

97 | ||||||||||||||||||

98 | ||||||||||||||||||

99 | ||||||||||||||||||

100 |

Loading...