A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Airbyte | Fivetran | Stitch | Airflow | Matillion | Singer | Meltano | Pipelinewise | |||||||||||
2 | Founded in | 2020 | 2012 | 2016 | 2015 | 2016 | 2019 | 2018 | |||||||||||
3 | Funding | $182M with Benchmark, Accel, Altimeter, Coatue, Salesforce... | $728M | acquired by Talend | N/A | $310M | N/A | $4.2M | N/A | ||||||||||
4 | # employees | 100+ | 1,000+ | N/A | N/A | N/A | |||||||||||||
5 | Based in | Remote (worldwide) | Worldwide | Worldwide | Worldwide | Worldwide | N/A | Remote (worldwide) | N/A | ||||||||||
6 | # daily active customers | 6,000+ | 5,000+ | ? | 500+ | ? | ? | ? | |||||||||||
7 | Focus | Data movement (including AI support). Data governance. Reverse-ETL coming in 2025. | Data ingestion, EL, and transformation. Data governance. | Data ingestion, ELT. | Workflow Management. | Data ingestion, data transformation, and business intelligence. | Data ingestion, ELT. | Data ingestion, ELT. | Data ingestion, ELT. | ||||||||||
8 | Pricing | Cloud: Volume-based pricing differentiating APIs from databases. Credits are rolled over. Enterprise: fixed contracts. | Free tier limited to 500k MARs (monthly active rows). Volume-based pricing with MARs. Credits are not rolled over. | Volume-based pricing with new added or edited rows. | Pricing for Cloud Composer is based on CPU, storage and egress cost. Pricing for MWAA is based on storage and compute cost. Astronomer.io’s pricing is not public. | Based on the number of Virtual Core Hours used. | N/A | N/A. | N/A | ||||||||||
9 | Sources | More than 350. Both structured and unstructured. | More than 500. No unstructured sources | More than 130. | More than 30 sources with the transfer operators. Sources are tightly coupled with destinations. | More than 100. | More than 110 after 5 years, but mostly deprecating in quality. | 30 natively. Integrates with all Singer connectors, but provided no maintenance of them. | 17 sources | ||||||||||
10 | Destinations | All data warehouses, lakes, databases, and vector databases. 50+ in total | All main warehouses, lakes and databases. 10+ in total. No vector databases. | All major data warehouses, lakes and databases. | All major data warehouses, lakes and databases. Destinations are tightly coupled with sources. | All major data warehouses, lakes and databases. | 10 targets only, with all major data warehouses, lakes and databases missing. | All major data warehouses, lakes and databases. | 4 destinations only, including Snowflake, Redshift, Postgres and S3 | ||||||||||
11 | Customizability of connectors | User can edit any pre-built connectors and build new ones within 15 minutes with Airbyte’s Connector Builder (low-code, no-code, AI-powered). | Limited through Fivetran’s Cloud functions. | Stitch’s Import AI enables their users to push data from anywhere to their destination. | Users can edit any pre-built operator and build their own ones. | No. | User can edit any pre-built Singer taps and targets, but there is no standardization, and they need a lot of engineering work to be functional. | User can edit any pre-built Singer taps and targets, but there is no standardization, and they need a lot of engineering work to be functional. | User can edit any Pipelinewise connector, but there is no standardization, and they need a lot of engineering work to be functional. | ||||||||||
12 | Database replication | Full table and incremental via change data capture. Pricing adapted for this use case. | Full table and incremental via change data capture. Pricing is indexed on rows, so not adapted. | Full table and incremental via change data capture. Pricing is indexed on rows, so not adapted. | Full table replication. Incremental replication requires coding your own logic in your Airflow DAGs and SQL files to only extract new data. | Full table and incremental via SELECT/replication key, timestamp or change data capture for AWS-hosted Matillion ETL instances. | No | No | No | ||||||||||
13 | Integration with data stack | Integrates with Kubernetes, Airflow, Prefect, Dagster, dbt, LangChain, LlamaIndex, OpenAI, Cohere. | Integrates with Airflow, Prefect, and Dagster. | No. | Integrates deeply with Kubernetes, dbt, Airbyte and more. | No. | No | Integrate deeply with Airflow and dbt. | No | ||||||||||
14 | Support SLAs | Available | Available | Available | N/A | Available | No | No. | No | ||||||||||
15 | Security certifications | SOC 2, GDPR and ISO. HIPAA Conduit | HIPAA, GDPR, SOC 2 | HIPAA, GDPR, SOC 2 | N/A | GDPR | No | No. | No | ||||||||||
16 | Vendor lock-in | Airbyte Core and Connectors are open-source. Both monthly payments and annual contracts. | Annual contracts. | Annual contracts. Can leverage Singer’s open-source connectors when used (but connectors are of low quality). | Airflow Core and Operators are open source. | Annual contracts. Self-hosting implies a higher lock-in. | Singer is AGPL. | Meltano is built on top of Singer, which is open source (AGPL). | Apache License 2.0. But also built on top of Singer which is AGPL. | ||||||||||
17 | Purchase process | Self-service or sales for Airbyte Cloud. Open-source edition deployable in minutes. | Self-serve for free plan, otherwise sales. | Self-service or sales. | Self-service for Managed services with Google Cloud Composer and Amazon Managed Workflows for Apache Airflow (MWAA). Sales for Astronomer.io. Open-source edition deployable in minutes. | Sales only. | N/A. | N/A. | N/A. | ||||||||||
18 | API / CLI / Terraform Provider | Both API and Terraform Provider available for Airbyte Cloud and Open Source. | Both API and Terraform Provider available. | No. | Available. | No. | No | Teams can leverage their CLI. | No | ||||||||||
19 | Flexibility to Develop Python Data Pipelines | Available through PyAirbyte open-source library. | No. | No. | No. | No. | No. | No. | |||||||||||
20 | |||||||||||||||||||
21 | |||||||||||||||||||
22 | |||||||||||||||||||
23 | |||||||||||||||||||
24 | |||||||||||||||||||
25 | |||||||||||||||||||
26 | |||||||||||||||||||
27 | |||||||||||||||||||
28 | |||||||||||||||||||
29 | |||||||||||||||||||
30 | |||||||||||||||||||
31 | |||||||||||||||||||
32 | |||||||||||||||||||
33 | |||||||||||||||||||
34 | |||||||||||||||||||
35 | |||||||||||||||||||
36 | |||||||||||||||||||
37 | |||||||||||||||||||
38 | |||||||||||||||||||
39 | |||||||||||||||||||
40 | |||||||||||||||||||
41 | |||||||||||||||||||
42 | |||||||||||||||||||
43 | |||||||||||||||||||
44 | |||||||||||||||||||
45 | |||||||||||||||||||
46 | |||||||||||||||||||
47 | |||||||||||||||||||
48 | |||||||||||||||||||
49 | |||||||||||||||||||
50 | |||||||||||||||||||
51 | |||||||||||||||||||
52 | |||||||||||||||||||
53 | |||||||||||||||||||
54 | |||||||||||||||||||
55 | |||||||||||||||||||
56 | |||||||||||||||||||
57 | |||||||||||||||||||
58 | |||||||||||||||||||
59 | |||||||||||||||||||
60 | |||||||||||||||||||
61 | |||||||||||||||||||
62 | |||||||||||||||||||
63 | |||||||||||||||||||
64 | |||||||||||||||||||
65 | |||||||||||||||||||
66 | |||||||||||||||||||
67 | |||||||||||||||||||
68 | |||||||||||||||||||
69 | |||||||||||||||||||
70 | |||||||||||||||||||
71 | |||||||||||||||||||
72 | |||||||||||||||||||
73 | |||||||||||||||||||
74 | |||||||||||||||||||
75 | |||||||||||||||||||
76 | |||||||||||||||||||
77 | |||||||||||||||||||
78 | |||||||||||||||||||
79 | |||||||||||||||||||
80 | |||||||||||||||||||
81 | |||||||||||||||||||
82 | |||||||||||||||||||
83 | |||||||||||||||||||
84 | |||||||||||||||||||
85 | |||||||||||||||||||
86 | |||||||||||||||||||
87 | |||||||||||||||||||
88 | |||||||||||||||||||
89 | |||||||||||||||||||
90 | |||||||||||||||||||
91 | |||||||||||||||||||
92 | |||||||||||||||||||
93 | |||||||||||||||||||
94 | |||||||||||||||||||
95 | |||||||||||||||||||
96 | |||||||||||||||||||
97 | |||||||||||||||||||
98 | |||||||||||||||||||
99 | |||||||||||||||||||
100 |