ABCDEFGHIJKLMNOPQRSTUVWXYZ
1
2
Total Data : 1483Train : 80%Test : 20%
3
ClassifierFeature ExtractionAvg. Cross Validation Score(10 fold)PrecisionRecallF-scoreAccuracy
4
Random ForestsBag of Words(ngrams - upto trigrams)0.96459966720.49027248880.46163587480.34334652390.4444444444
5
Word2Vec0.70568970910.7998781490.53473407260.56655938470.7138047138
6
Linear Support Vector ClassifierBag of Words(ngrams - upto trigrams)0.97050447740.47007601160.3928528060.30651678560.3939393939
7
Word2Vec0.89637145860.8938706530.87072979960.88108142440.9057239057
8
K-Nearest NeighboursBag of Words(ngrams - upto trigrams)0.93160577180.3823619760.4084048920.38160305280.5723905724
9
Word2Vec0.73617621160.70960159140.63811958550.65919671720.7407407407
10
Gaussian Naive BayesBag of Words(ngrams - upto trigrams)0.73214383310.68068540460.56396151280.59779359970.7070707071
11
Word2Vec0.78083345580.72188272190.74641582710.73001812420.771043771
12
Logistic Regression(One vs Rest)Bag of Words(ngrams - upto trigrams)0.96714977650.50341794540.48027719570.44084616860.531986532
13
Word2Vec0.89375107220.86777199410.87681514050.87140537540.8922558923
14
Neural NetworkBag of Words(ngrams - upto trigrams)0.9587668330.62755693580.59592743240.59601811530.7306397306
15
Word2Vec0.90305189370.86406778880.85780662950.86043601090.8888888889
16
Multinomial Naive BayesBag of Words(ngrams - upto trigrams)0.92403490980.67554996860.67845950640.66777844540.7508417508
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100