
CycloneDX 1.3 CycloneDX 1.4 SPDX 2.2
Class / Type Property Property Type Cardinality Class / Type Property Property Type Cardinality Class / Type Property Property Type Cardinality Notes

[Top Level] bomFormat String - "CycloneDX" 1..1 [Top Level] bomFormat String - "CycloneDX" 1..1 Fixed string - not applicable
[Top Level] specVersion String 1..1 [Top Level] specVersion String 1..1 [Top Level] spdxVersion String 1..1
[Top Level] serialNumber String 0..1 [Top Level] serialNumber String 0..1 [Top Level] documentNamespace String - URI 1..1 Converted to a URI if present, otherwise a new namespace is created with a random UUID
[Top Level] version integer 1..1 [Top Level] version integer 1..1 [Top Level] documentNamespace String - URI 1..1 Version is appended to the SPDX document namespace
[Top Level] metadata Metadata Object 0..1 [Top Level] metadata Metadata Object 0..1 [Top Level] creationInfo CreationInfo 1..1

[Top Level] components Component Object 0..* [Top Level] components Component Object 0..* [Top Level] packages, files Package Object 0..*
All components are added. If there is no metadata correlated to the SPDX document describes,
all of these components are added as the document describes elements

[Top Level] services Service Object 0..* [Top Level] services Service Object 0..* [Top Level] annotations Annotation Object 0..* No SPDX equiv.

[Top Level] externalReferences ExteranlReference Object 0..* [Top Level] externalReferences ExteranlReference Object 0..* [Top Level] annotations Annotation Object 0..*
Not applicable for the SPDX document level - only at the component level. One possibility is to
create an SPDX package for the SBOM which would contain this information

[Top Level] dependencies Dependency Object 0..* [Top Level] dependencies Dependency Object 0..* [Top Level] relationships Relationship 0..* Relationship type dependency of
[Top Level] compositions Composition Object 0..* [Top Level] compositions Composition Object 0..* [Top Level] relationships Relationship 0..* Completeness information is added as comments to the Relationship.

[Top Level] vulnerabilities Vulnerability Object 0..* No SPDX equiv. - plan to generate separate VEX document
[Top Level] signature Signature Object 0..1 No SPDX equiv. - plan to generate separate VEX document

[Top Level] SPDXID String 1..1 Constant - always the same value
[Top Level] reviewed Review Object 0..* Deprecated as of 2.0

[Top Level] hasExtractedLiceningInfos ExtractedLicense Object 0..*
Currently not used - this could be used to capture license text from the license object in the
future

[Top Level] name String 1..1 Generated from the documentDescribes
[Top Level] comment String 0..1 Not used
[Top Level] snippets Snippet Object 0..* No equivalent in CDX

MetaData timestamp String 0..1 MetaData timestamp String 0..1 CreationInfo created Timestamp 1..1
MetaData tools Tool 0..* MetaData tools Tool 0..* CreationInfo creators String 1..* Checksums are captured in Annotations
MetaData author OrganizationalContact 0..* MetaData author OrganizationalContact 0..* CreationInfo creators String 1..* Contact phone numbers and multiple emails care captured in Annotations
MetaData component Component 0..1 MetaData component Component 0..1 [Top Level] documentDescribes String - SPDX ID 1..* If this is not present, all top level compenents are added

MetaData manufacture OrganizationalEntity 0..1 MetaData manufacture OrganizationalEntity 0..1 [Top Level] annotations Annotation Object 0..*

Annotations are used to capture any fields which can not be mapped to SPDX. The Annotation
type is OTHER and the comment is of the format MISSING_CDX_PROPERTY:
<propertyname>=<propertyJSONvalue>

MetaData supplier OrganizationalEntity 0..1 MetaData supplier OrganizationalEntity 0..1 CreationInfo creators String 1..* Contact phone numbers and multiple emails care captured in Annotations
MetaData licenses LicenseChoice 0..* MetaData licenses LicenseChoice 0..* [Top Level] dataLicense String "CC0" 1..1 Defaults to CC0 if no metadata license is provided

MetaData properties Property 0..* MetaData properties Property 0..* [Top Level] annotations Annotation Object 0..*

Annotations are used to capture any fields which can not be mapped to SPDX. The Annotation
type is OTHER and the comment is of the format MISSING_CDX_PROPERTY:
<propertyname>=<propertyJSONvalue>

CreationInfo comment String 0..1 Not used

Component type enum 1..1 Component type enum 1..1 Package or File annotations Annotation Object 0..*

Annotations are used to capture any fields which can not be mapped to SPDX. The Annotation
type is OTHER and the comment is of the format MISSING_CDX_PROPERTY:
<propertyname>=<propertyJSONvalue>

Component mime-type String 0..1 Component mime-type String 0..1 File fileTypes enum 0..* If a mime type does not map to the enum, it is added as an Annotation to the file
Component bom-ref String 0..1 Component bom-ref String 0..1 Package or File Id String 1..1 Converted to a format complying with the SPDX ID syntax
Component supplier OrganizationalEntity 0..1 Component supplier OrganizationalEntity 0..1 Package supplier String 0..1 Contact phone numbers and multiple emails care captured in Annotations
Component author String 0..1 Component author String 0..1 Package originator String 0..1

Component publisher String 0..1 Component publisher String 0..1 Package annotations Annotation Object 0..*

Annotations are used to capture any fields which can not be mapped to SPDX. The Annotation
type is OTHER and the comment is of the format MISSING_CDX_PROPERTY:
<propertyname>=<propertyJSONvalue>

Component group String 0..1 Component group String 0..1 Package annotations Annotation Object 0..*

Annotations are used to capture any fields which can not be mapped to SPDX. The Annotation
type is OTHER and the comment is of the format MISSING_CDX_PROPERTY:
<propertyname>=<propertyJSONvalue>

Component name String 1..1 Component name String 1..1 Package or File name String 1..1
Component version String 1..1 Component version String 0..1 Package versionInfo String 1..1
Component description String 0..1 Component description String 0..1 Package description String 1..1

Component scope enum 0..1 Component scope enum 0..1 Relationship relationshipType enum 1..1

The scope declared on a component is used if the component is included in some type of
relationship. Otherwise it is ignored since scope must be taken into account in how the
component is used and is not intrinsic to the component itself.

Component hashes Hash 0..* Component hashes Hash 0..* Package or File checksums Checksum 1..* If a checksum algorithm is not supported by SPDX, it is added as an annotation

Component licenses LicenseChoice 0..1 Component licenses LicenseChoice 0..1 Package or File declaredLicense or licenseInfoFromFileAnyLicenseInfo 1..1
Currently, license text information is added as annotations - this can be changed to using
ExtractedLicenseInfos in the future

Component copyright String 0..1 Component copyright String 0..1 Package copyright String 1..1
Component cpe String 0..1 Component cpe String 0..1 Package externalRef ExternalRef 0..*
Component purl String 0..1 Component purl String 0..1 Package externalRef ExternalRef 0..*

Component swid Swid 0..1 Component swid Swid 0..1 Package annotations Annotation Object 0..*
Although there is an externalRef which can be used, the Swid object contains the content, so
the Annotation approach was chosen

Component modified boolean 0..1 Component modified - deprecated Package sourceInfo String 0..* Converted to String format
Component pedigree Pedigree 0..1 Component pedigree Pedigree 0..1 Package relationships Relationship 0..*
Component externalReferences ExternalReference 0..* Component externalReferences ExternalReference 0..* Package externalRef ExternalRef 0..*
Component components Component 0..* Component components Component 0..* Package relationships Relationship 0..* CONTAINS relationship is used for any sub-components

Component evidence Evidence 0..1 Component evidence Evidence 0..1 Package attributionTexts String 0..*
Content is not copied into the attribution texts - this could be done, but it would require more
work to understand all supported enodings used by CycloneDX

Component properties Property 0..* Component properties Property 0..* Package or File annotations Annotation Object 0..*

Annotations are used to capture any fields which can not be mapped to SPDX. The Annotation
type is OTHER and the comment is of the format MISSING_CDX_PROPERTY:
<propertyname>=<propertyJSONvalue>

Component releaseNotes ReleaseNote 0..1 New 1.4 fields have not yet been added or analyzed
Component signature JSON Signature 0..1 New 1.4 fields have not yet been added or analyzed

Package String 0..* Not used
Package homePage URL 0..1 Not used
Package packageVerificationCode VerificationCode 0..1 Not used
Package downloadLocation URL 1..1 NOASSERTION value used
Package filesAnalyzed boolean 0..1 Set to false
Package licenseComments String 0..1 Not used
Package hasFiles String 0..* Not used - Note - if the subcomponents are files, we could add logic to treat those as hasFiles
Package comment String 0..1 Not used
Package summary String 0..1 Not used
Package packageFileName String 0..1 If the component type is a file, then the component name is also added to the packageFileName
Package licenseInfosFromFile AnyLicenseInfo 0..* Not used
Package concludedLicense AnyLicenseInfo 1..1 Use NOASSERTION
File noticeText String 0..1 Not used
File artifactOfs DoapPorject 0..* Deprecated - not used
File licenseComments String 0..1 Not used
File comment String 0..1 Not used
File fileContributors String 0..* Not used
File licenseConcluded AnyLicenseInfo 0..1 NOASSERTION value used
File fileDependencies String 0..* Deprecated - not used

ExternalReference url String 1..1 ExternalReference url String 1..1 ExternalRef referenceLocator String 1..1
ExternalReference comment String 0..1 ExternalReference comment String 0..1 ExternalRef comment String 0..1

ExternalReference type enum 1..1 ExternalReference type enum 1..1 ExternalRef referenceType URI 1..1
most types are mapped to an existing SPDX pre-defined reference type, otherwise a custom
reference type is defined with a prefix http://cyclonedx.org/referenctype/

ExternalReference hashes Hash 0..* New 1.4 fields have not yet been added or analyzed
ExternalRef referenceCategory enum 1..1 Mapped from type

