| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | AA | AB | AC | AD | AE | AF | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Monday | Tuesday | Wednesday | Thursday | Friday | |||||||||||||||||||||||||||
2 | ||||||||||||||||||||||||||||||||
3 | 10:00--10:30 | Welcome and coffee | 09:30--11:00 | Garban 2 | 09:30--11:00 | Peltola 2 | 09:30--11:00 | Kahle 3 | 09:30--11:00 | Kahle 4 | ||||||||||||||||||||||
4 | 10:30--12:00 | Garban 1 | 11:00--11:30 | Coffee break | 11:00--11:30 | Coffee break | 11:00--11:30 | Coffee break | 11:00--11:30 | Coffee Break | ||||||||||||||||||||||
5 | 11:30--13:00 | Kahle 2 | 11:30--13:00 | Garban 3 | 11:30--13:00 | Peltola 3 | 11:30--13:00 | Peltola 4 | ||||||||||||||||||||||||
6 | ||||||||||||||||||||||||||||||||
7 | afternoon | contributed talks (20' talk + 5' questions) | ||||||||||||||||||||||||||||||
8 | 13:30--15:00 | Kahle 1 | 14:30--14:55 | Dewan | Title: Gaussian first passage percolation Abstract: The model of percolation given by sub-level sets of continuous Gaussian fields on R^d with fast decorrelation features many analogous properties with Bernoulli percolation on Z^d, including a sharp phase transition. The extent of these analogies is the subject of many recent investigations. One natural direction is to try and extend the comparison to the random pseudometric model of first passage percolation (FPP). In the lattice model, it consists in assigning independently a non-negative random variable of same law to each edge, and defining the distance T(x,y) between two vertices x and y as the least sum of these random variables among all edge paths between x and y. We will explain how a natural counterpart of such a model can be defined in the setting of continuous Gaussian fields. We will then show how, just like in the lattice case, the important factor in the behaviour of the model is whether or not the zero-distance clusters percolate. | Free Afternoon | ||||||||||||||||||||||||||
9 | 15:00--15:30 | Coffee break | 14:55--15:20 | Abuzaid | Title: On the thermodynamic limit of self-avoiding random walk Abstract: A self-avoiding random walk is a uniformly sampled injective path of N steps in an infinite (square) lattice started from a fixed vertex. One of the main open problems is the existence of a unique weak limit of the random paths as N tends to infinity. I will share my on-going attempts at understanding the limiting object by reducing the analysis to so called initial box patterns and their properties. | |||||||||||||||||||||||||||
10 | 15:30--17:00 | Peltola 1 | 15:20--15:45 | Javerzat | Title: Evidences of conformal invariance in 2D rigidity percolation Abstract: It is a very remarkable and yet not understood fact that critical phenomena have conformally invariant statistical properties. Although it is implied by scale invariance for systems with local interactions, there is no reason to expect so when the degrees of freedom are non local, as for instance in percolation phenomena. Nevertheless, it seems that conformal invariance emerges also in these latter cases, and examples of scale but not conformal systems remain extremely rare. Here, we reveal the existence of such symmetry for two-dimensional rigidity percolation that belongs to a different universality class than connectivity percolation, and for which the question of conformal invariance had not been addressed so far. The rigidity transition occurs at higher filling fraction than connectivity percolation, when percolating clusters become able to transmit and ensure mechanical stability to the overall disordered network. We show that i) these clusters are conformally invariant random fractals and ii) we use conformal field theory to predict the form of universal finite size effects. Our findings open a new avenue for the application of conformal field theories in physical and biological systems exhibiting such a mechanical transition. | 14:30--16 | Garban 4 | |||||||||||||||||||||||||
11 | 15:45--16:15 | Coffee break | ||||||||||||||||||||||||||||||
12 | 16:15--16:40 | Lippolis | Title: Topology and statistics of noisy chaos Abstract: It is well known that the phase space of a chaotic system has a self-similar (fractal) structure of infinite resolution. In reality, every system experiences noise, coming from experimental uncertainties, neglected degrees of freedom, or roundoff errors, for example. No matter how weak, noise smoothens out fractals, giving the system a finite resolution. The consequences are dramatic for the computation of long-time dynamical averages, such as diffusion coefficients or escape rates, since infinite-dimensional operators describing the evolution of the system (such as Fokker-Planck) effectively become finite matrices. In this setting, we solve the problem of statistical mechanics by studying the topology (partitioning and symbolic dynamics) of the noisy phase space, and describe the dynamics via Markov graphs, whose determinants yield the expectation values of the desired observables. | |||||||||||||||||||||||||||||
13 | 16:40--17:05 | Roldan | Title: Topology of random 2-dimensional cubical complexes Abstract: We study a natural model of random 2-dimensional cubical complexes which are subcomplexes of an n-dimensional cube, and where every possible square (2-face) is included independently with probability p. Our main result exhibits a sharp threshold p=1/2 for homology vanishing as the dimension n goes to infinity. This is a 2-dimensional analogue of the Burtin and Erdős-Spencer theorems characterizing the connectivity threshold for random graphs on the 1-skeleton of the n-dimensional cube. Our main result can also be seen as a cubical counterpart to the Linial-Meshulam theorem for random 2-dimensional simplicial complexes. However, the models exhibit strikingly different behaviors. We show that if p > 1 - √1/2 ≈ 0.2929, then with high probability the fundamental group is a free group with one generator for every maximal 1-dimensional face. As a corollary, homology vanishing and simple connectivity have the same threshold. This is joint work with Matthew Kahle and Elliot Paquette. | |||||||||||||||||||||||||||||
14 | 17:05--17:30 | Maibach | Title: From the Weyl Anomaly Formula to the Virasoro Algebra Abstract: In Euclidean two-dimensional conformal field theory, the Weyl anomaly formula gives the factor by which correlation functions change under local rescaling of the metric. The "Liouville action" in this factor can be written as an anti-symmetric pairing on conformally equivalent metrics. Properties of this pairing allow the definition of a real determinant line - a real one-dimensional vector space associated to the surface, which captures the Weyl anomaly. These determinant lines form a vector bundles over moduli spaces of Riemann surfaces. Here I will focus on the moduli space of cylinders, which forms a semigroup under the gluing of cylinders along their boundary components. The determinant lines together with the gluing operation induce a central extension of the diffeomorphism group of the circle. I explicitly compute that the associated Lie algebra is the Virasoro algebra - the algebra of symmetries in conformal field theory. Related topics include modular functors, Virasoro uniformization and Malliavin-Kontsevich-Suhov loop measures. | |||||||||||||||||||||||||||||
15 | 17:30--17:55 | Adame-Carrillo | Title: The Virasoro representation of double-dimers Abstract: We consider a discretization of the action of symplectic fermions —a CFT at c=-2 in the Physics literature— that combinatorically encodes uniform double-dimers, which is also conjectured to be described by a CFT at c=-2. Using techniques of discrete complex analysis, we construct a representation of the c=-2 Virasoro algebra on a subspace of random variables of the model of double-dimers. | |||||||||||||||||||||||||||||
16 | ||||||||||||||||||||||||||||||||
17 | 20:00 | Social dinner | ||||||||||||||||||||||||||||||
18 | ||||||||||||||||||||||||||||||||
19 | ||||||||||||||||||||||||||||||||
20 | ||||||||||||||||||||||||||||||||
21 | ||||||||||||||||||||||||||||||||
22 | ||||||||||||||||||||||||||||||||
23 | ||||||||||||||||||||||||||||||||
24 | ||||||||||||||||||||||||||||||||
25 | ||||||||||||||||||||||||||||||||
26 | ||||||||||||||||||||||||||||||||
27 | ||||||||||||||||||||||||||||||||
28 | ||||||||||||||||||||||||||||||||
29 | ||||||||||||||||||||||||||||||||
30 | ||||||||||||||||||||||||||||||||
31 | ||||||||||||||||||||||||||||||||
32 | ||||||||||||||||||||||||||||||||
33 | ||||||||||||||||||||||||||||||||
34 | ||||||||||||||||||||||||||||||||
35 | ||||||||||||||||||||||||||||||||
36 | ||||||||||||||||||||||||||||||||
37 | ||||||||||||||||||||||||||||||||
38 | ||||||||||||||||||||||||||||||||
39 | ||||||||||||||||||||||||||||||||
40 | ||||||||||||||||||||||||||||||||
41 | ||||||||||||||||||||||||||||||||
42 | ||||||||||||||||||||||||||||||||
43 | ||||||||||||||||||||||||||||||||
44 | ||||||||||||||||||||||||||||||||
45 | ||||||||||||||||||||||||||||||||
46 | ||||||||||||||||||||||||||||||||
47 | ||||||||||||||||||||||||||||||||
48 | ||||||||||||||||||||||||||||||||
49 | ||||||||||||||||||||||||||||||||
50 | ||||||||||||||||||||||||||||||||
51 | ||||||||||||||||||||||||||||||||
52 | ||||||||||||||||||||||||||||||||
53 | ||||||||||||||||||||||||||||||||
54 | ||||||||||||||||||||||||||||||||
55 | ||||||||||||||||||||||||||||||||
56 | ||||||||||||||||||||||||||||||||
57 | ||||||||||||||||||||||||||||||||
58 | ||||||||||||||||||||||||||||||||
59 | ||||||||||||||||||||||||||||||||
60 | ||||||||||||||||||||||||||||||||
61 | ||||||||||||||||||||||||||||||||
62 | ||||||||||||||||||||||||||||||||
63 | ||||||||||||||||||||||||||||||||
64 | ||||||||||||||||||||||||||||||||
65 | ||||||||||||||||||||||||||||||||
66 | ||||||||||||||||||||||||||||||||
67 | ||||||||||||||||||||||||||||||||
68 | ||||||||||||||||||||||||||||||||
69 | ||||||||||||||||||||||||||||||||
70 | ||||||||||||||||||||||||||||||||
71 | ||||||||||||||||||||||||||||||||
72 | ||||||||||||||||||||||||||||||||
73 | ||||||||||||||||||||||||||||||||
74 | ||||||||||||||||||||||||||||||||
75 | ||||||||||||||||||||||||||||||||
76 | ||||||||||||||||||||||||||||||||
77 | ||||||||||||||||||||||||||||||||
78 | ||||||||||||||||||||||||||||||||
79 | ||||||||||||||||||||||||||||||||
80 | ||||||||||||||||||||||||||||||||
81 | ||||||||||||||||||||||||||||||||
82 | ||||||||||||||||||||||||||||||||
83 | ||||||||||||||||||||||||||||||||
84 | ||||||||||||||||||||||||||||||||
85 | ||||||||||||||||||||||||||||||||
86 | ||||||||||||||||||||||||||||||||
87 | ||||||||||||||||||||||||||||||||
88 | ||||||||||||||||||||||||||||||||
89 | ||||||||||||||||||||||||||||||||
90 | ||||||||||||||||||||||||||||||||
91 | ||||||||||||||||||||||||||||||||
92 | ||||||||||||||||||||||||||||||||
93 | ||||||||||||||||||||||||||||||||
94 | ||||||||||||||||||||||||||||||||
95 | ||||||||||||||||||||||||||||||||
96 | ||||||||||||||||||||||||||||||||
97 | ||||||||||||||||||||||||||||||||
98 | ||||||||||||||||||||||||||||||||
99 | ||||||||||||||||||||||||||||||||
100 |