A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

1 | AQA TRILOGY Physics: Forces Checklist | ||||||||||||||||||||||

2 | 6.5.1 Forces and their interactions | Identify and describe scalar quantities and vector quantities | |||||||||||||||||||||

3 | Identify and give examples of forces as contact or non-contact forces | ||||||||||||||||||||||

4 | Describe the interaction between two objects and the force produced on each as a vector | ||||||||||||||||||||||

5 | Describe weight and explain that its magnitude at a point depends on the gravitational field strength | ||||||||||||||||||||||

6 | Calculate weight by recalling and using the equation: [ W = mg ] | ||||||||||||||||||||||

7 | Represent the weight of an object as acting at a single point which is referred to as the object's ‘centre of mass’ | ||||||||||||||||||||||

8 | Calculate the resultant of two forces that act in a straight line | ||||||||||||||||||||||

9 | HT ONLY: describe examples of the forces acting on an isolated object or system | ||||||||||||||||||||||

10 | HT ONLY: Use free body diagrams to qualitatively describe examples where several forces act on an object and explain how that leads to a single resultant force or no force | ||||||||||||||||||||||

11 | HT ONLY: Use free body diagrams and accurate vector diagrams to scale, to resolve multiple forces and show magnitude and direction of the resultant | ||||||||||||||||||||||

12 | HT ONLY: Use vector diagrams to illustrate resolution of forces, equilibrium situations and determine the resultant of two forces, to include both magnitude and direction | ||||||||||||||||||||||

13 | 6.5.2 Work done and energy transfer | Describe energy transfers involved when work is done and calculate the work done by recalling and using the equation: [ W = Fs ] | |||||||||||||||||||||

14 | Describe what a joule is and state what the joule is derived from | ||||||||||||||||||||||

15 | Convert between newton-metres and joules. | ||||||||||||||||||||||

16 | Explain why work done against the frictional forces acting on an object causes a rise in the temperature of the object | ||||||||||||||||||||||

17 | 6.5.3 Forces and elasticity | Describe examples of the forces involved in stretching, bending or compressing an object | |||||||||||||||||||||

18 | Explain why, to change the shape of an object (by stretching, bending or compressing), more than one force has to be applied – this is limited to stationary objects only | ||||||||||||||||||||||

19 | Describe the difference between elastic deformation and inelastic deformation caused by stretching forces | ||||||||||||||||||||||

20 | Describe the extension of an elastic object below the limit of proportionality and calculate it by recalling and applying the equation: [ F = ke ] | ||||||||||||||||||||||

21 | Explain why a change in the shape of an object only happens when more than one force is applied | ||||||||||||||||||||||

22 | Describe and interpret data from an investigation to explain possible causes of a linear and non-linear relationship between force and extension | ||||||||||||||||||||||

23 | Calculate work done in stretching (or compressing) a spring (up to the limit of proportionality) by applying, but not recalling, the equation: [ Ee= ½ke2 ] | ||||||||||||||||||||||

24 | Required practical 18: investigate the relationship between force and extension for a spring | ||||||||||||||||||||||

25 | 6.5.4 Forces and motion | Define distance and displacement and explain why they are scalar or vector quantities | |||||||||||||||||||||

26 | Express a displacement in terms of both the magnitude and direction | ||||||||||||||||||||||

27 | Explain that the speed at which a person can walk, run or cycle depends on a number of factors and recall some typical speeds for walking, running, cycling | ||||||||||||||||||||||

28 | Make measurements of distance and time and then calculate speeds of objects in calculating average speed for non-uniform motion | ||||||||||||||||||||||

29 | Explain why the speed of wind and of sound through air varies and calculate speed by recalling and applying the equation: [ s = v t ] | ||||||||||||||||||||||

30 | Explain the vector–scalar distinction as it applies to displacement, distance, velocity and speed | ||||||||||||||||||||||

31 | HT ONLY: Explain qualitatively, with examples, that motion in a circle involves constant speed but changing velocity | ||||||||||||||||||||||

32 | Represent an object moving along a straight line using a distance-time graph, describing its motion and calculating its speed from the graph's gradient | ||||||||||||||||||||||

33 | Draw distance–time graphs from measurements and extract and interpret lines and slopes of distance–time graphs, | ||||||||||||||||||||||

34 | Describe an object which is slowing down as having a negative acceleration and estimate the magnitude of everyday accelerations | ||||||||||||||||||||||

35 | Calculate the average acceleration of an object by recalling and applying the equation: [ a = Δv/t ] | ||||||||||||||||||||||

36 | Represent motion using velocity–time graphs, finding the acceleration from its gradient and distance travelled from the area underneath | ||||||||||||||||||||||

37 | HT ONLY: Interpret enclosed areas in velocity–time graphs to determine distance travelled (or displacement) | ||||||||||||||||||||||

38 | HT ONLY: Measure, when appropriate, the area under a velocity– time graph by counting square | ||||||||||||||||||||||

39 | Apply, but not recall, the equation: [ v2 – u2 = 2as ] | ||||||||||||||||||||||

40 | Explain the motion of an object moving with a uniform velocity and identify that forces must be in effect if its velocity is changing, by stating and applying Newton’s First Law | ||||||||||||||||||||||

41 | Define and apply Newton's second law relating to the acceleration of an object | ||||||||||||||||||||||

42 | Recall and apply the equation: [ F = ma ] | ||||||||||||||||||||||

43 | HT ONLY: Describe what inertia is and give a definition | ||||||||||||||||||||||

44 | Estimate the speed, accelerations and forces of large vehicles involved in everyday road transport | ||||||||||||||||||||||

45 | Required practical 19: investigate the effect of varying the force on the acceleration of an object of constant mass, and the effect of varying the mass of an object on the acceleration | ||||||||||||||||||||||

46 | Apply Newton’s Third Law to examples of equilibrium situations | ||||||||||||||||||||||

47 | Describe factors that can effect a drivers reations time | ||||||||||||||||||||||

48 | Explain methods used to measure human reaction times and recall typical results | ||||||||||||||||||||||

49 | Interpret and evaluate measurements from simple methods to measure the different reaction times of students | ||||||||||||||||||||||

50 | Evaluate the effect of various factors on thinking distance based on given data | ||||||||||||||||||||||

51 | State typical reaction times and describe how reaction time (and therefore stopping distance) can be affected by different factors | ||||||||||||||||||||||

52 | Explain methods used to measure human reaction times and take, interpret and evaluate measurements of the reaction times of students | ||||||||||||||||||||||

53 | Explain how the braking distance of a vehicle can be affected by different factors, including implications for road safety | ||||||||||||||||||||||

54 | Explain how a braking force applied to the wheel does work to reduce the vehicle's kinetic energy and increases the temperature of the brakes | ||||||||||||||||||||||

55 | Explain and apply the idea that a greater braking force causes a larger deceleration and explain how this might be dangerous for drivers | ||||||||||||||||||||||

56 | HT ONLY: Estimate the forces involved in the deceleration of road vehicles | ||||||||||||||||||||||

57 | 6.5.5 Momentum | HT ONLY: Calculate momentum by recalling and applying the equation: [ p = mv ] | |||||||||||||||||||||

58 | HT ONLY: Explain and apply the idea that, in a closed system, the total momentum before an event is equal to the total momentum after the event | ||||||||||||||||||||||

59 | HT ONLY: Describe examples of momentum in a collision | ||||||||||||||||||||||

60 | |||||||||||||||||||||||

61 | |||||||||||||||||||||||

62 | |||||||||||||||||||||||

63 | |||||||||||||||||||||||

64 | |||||||||||||||||||||||

65 | |||||||||||||||||||||||

66 | |||||||||||||||||||||||

67 | |||||||||||||||||||||||

68 | |||||||||||||||||||||||

69 | |||||||||||||||||||||||

70 | |||||||||||||||||||||||

71 | |||||||||||||||||||||||

72 | |||||||||||||||||||||||

73 | |||||||||||||||||||||||

74 | |||||||||||||||||||||||

75 | |||||||||||||||||||||||

76 | |||||||||||||||||||||||

77 | |||||||||||||||||||||||

78 | |||||||||||||||||||||||

79 | |||||||||||||||||||||||

80 | |||||||||||||||||||||||

81 | |||||||||||||||||||||||

82 | |||||||||||||||||||||||

83 | |||||||||||||||||||||||

84 | |||||||||||||||||||||||

85 | |||||||||||||||||||||||

86 | |||||||||||||||||||||||

87 | |||||||||||||||||||||||

88 | |||||||||||||||||||||||

89 | |||||||||||||||||||||||

90 | |||||||||||||||||||||||

91 | |||||||||||||||||||||||

92 | |||||||||||||||||||||||

93 | |||||||||||||||||||||||

94 | |||||||||||||||||||||||

95 | |||||||||||||||||||||||

96 | |||||||||||||||||||||||

97 | |||||||||||||||||||||||

98 | |||||||||||||||||||||||

99 | |||||||||||||||||||||||

100 |

Loading...

Main menu