| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Week | Day | Session Title | Description | ||||||||||||||||||||||
2 | 1 | 1 | Python Refresher (FAANG coding) | Python essentials, idiomatic code, problem solving | ||||||||||||||||||||||
3 | 1 | 2 | NumPy Deep Dive | Vectorization, broadcasting, performance tricks | ||||||||||||||||||||||
4 | 1 | 3 | Pandas for ML I | DataFrame basics, groupby, joins, merges | ||||||||||||||||||||||
5 | 1 | 4 | SQL for ML Engineers | Aggregations, joins, window functions, cohorting | ||||||||||||||||||||||
6 | 1 | 5 | EDA Lab + Homework | Exploratory analysis, visualizations, pitfalls; assignment provided | ||||||||||||||||||||||
7 | 2 | 1 | Linear Algebra for ML | Vectors, matrices, eigen, SVD intuition | ||||||||||||||||||||||
8 | 2 | 2 | Calculus & Gradients | Derivatives, chain rule, Jacobian, Hessian intuition | ||||||||||||||||||||||
9 | 2 | 3 | Probability Essentials | Discrete & continuous distributions, Bayes' rule | ||||||||||||||||||||||
10 | 2 | 4 | Statistics for ML | Hypothesis testing, confidence intervals, p-values | ||||||||||||||||||||||
11 | 2 | 5 | Math Lab: Derivations & Problems | Practice problems: linear algebra & probability for ML | ||||||||||||||||||||||
12 | 3 | 1 | ML Theory – Derive gradient for logistic regression and explain convexity. | Derive gradient for logistic regression and explain convexity. | ||||||||||||||||||||||
13 | 3 | 2 | Linear Regression & GLMs | Least squares, regularization, GLM intuition | ||||||||||||||||||||||
14 | 3 | 3 | Logistic Regression & Calibration | Probabilistic outputs, calibration, class imbalance | ||||||||||||||||||||||
15 | 3 | 4 | Decision Trees | Gini, entropy, splitting, pruning techniques | ||||||||||||||||||||||
16 | 3 | 5 | Ensemble Methods & Boosting | Random Forests, Gradient Boosting intuition (XGBoost) | ||||||||||||||||||||||
17 | 4 | 1 | Classical ML Lab | Hands-on: training pipelines + cross-validation | ||||||||||||||||||||||
18 | 4 | 2 | Feature Engineering Strategies | Missing data, encoding, interactions, feature crosses | ||||||||||||||||||||||
19 | 4 | 3 | Model Evaluation Deep Dive | ROC, PR, calibration, cost-sensitive metrics | ||||||||||||||||||||||
20 | 4 | 4 | Data Preprocessing Pipelines | Scaling, imputation, leakage avoidance, pipelines (sklearn) | ||||||||||||||||||||||
21 | 4 | 5 | Bias, Variance & Regularization | Underfitting/overfitting, L1/L2, dropout intuition | ||||||||||||||||||||||
22 | 5 | 1 | Feature + Eval Lab | Feature ablation, error analysis practical | ||||||||||||||||||||||
23 | 5 | 2 | ML Theory – Explain bias-variance tradeoff with examples. | Explain bias-variance tradeoff with examples. | ||||||||||||||||||||||
24 | 5 | 3 | ML Coding – Clean and join multi‑table log data for modeling (FAANMG style). | Clean and join multi‑table log data for modeling (FAANMG style). | ||||||||||||||||||||||
25 | 5 | 4 | Data Engineering for ML – Build a feature store architecture: online/offline sync. | Build a feature store architecture: online/offline sync. | ||||||||||||||||||||||
26 | 5 | 5 | Neural Networks I | Perceptron, MLPs, representation power | ||||||||||||||||||||||
27 | 6 | 1 | Backpropagation & Computation Graphs | Autodiff intuition, gradients in practice | ||||||||||||||||||||||
28 | 6 | 2 | Activation Functions & Initialization | ReLU, GELU, Xavier/He init | ||||||||||||||||||||||
29 | 6 | 3 | Optimization Methods | SGD, momentum, Adam, lr schedules, batch sizes | ||||||||||||||||||||||
30 | 6 | 4 | DL Lab I: Train a small NN | Hands-on: build/train/debug NN (PyTorch) | ||||||||||||||||||||||
31 | 6 | 5 | CNN Basics | Convolution, pooling, receptive field | ||||||||||||||||||||||
32 | 7 | 1 | Modern CNN Architectures | ResNet, EfficientNet concepts | ||||||||||||||||||||||
33 | 7 | 2 | Transfer Learning & Fine-tuning | Practical transfer learning workflows | ||||||||||||||||||||||
34 | 7 | 3 | Augmentation Strategies | AugMix, CutMix, AutoAugment basics | ||||||||||||||||||||||
35 | 7 | 4 | CNN Lab: Image Classification | Hands-on: transfer learning on small dataset | ||||||||||||||||||||||
36 | 7 | 5 | Text Preprocessing & Tokenization | Normalization, tokenizers, edge cases | ||||||||||||||||||||||
37 | 8 | 1 | Classical NLP Methods | TF-IDF, n-grams, traditional pipelines | ||||||||||||||||||||||
38 | 8 | 2 | Embeddings & Representation | Word2Vec, GloVe, contextual embeddings intro | ||||||||||||||||||||||
39 | 8 | 3 | RNNs & LSTMs (brief) | When to use RNNs; vanishing gradients; use cases | ||||||||||||||||||||||
40 | 8 | 4 | NLP Lab: Text Classification | Hands-on: build text classifier (HF or simple) | ||||||||||||||||||||||
41 | 8 | 5 | ML Coding – Implement a vectorized softmax. | Implement a vectorized softmax. | ||||||||||||||||||||||
42 | 9 | 6 | LLMs – Design a RAG pipeline for enterprise search. | Design a RAG pipeline for enterprise search. | ||||||||||||||||||||||
43 | 9 | 1 | Self-Attention & Scaled Dot-Product | Mechanics of attention, QKV math intuition | ||||||||||||||||||||||
44 | 9 | 2 | Transformer Architecture | Multi-head attention, FFN, positional encodings | ||||||||||||||||||||||
45 | 9 | 3 | LLM Training Dynamics | Pretraining objectives, tokenizers, compute considerations. LLM evals, agent evals, guardrails | ||||||||||||||||||||||
46 | 9 | 4 | Tokenization Deep Dive | BPE, WordPiece, SentencePiece & subword issues | ||||||||||||||||||||||
47 | 9 | 5 | LLM Lab: Fine-tuning | Hands-on: fine-tune a pre-trained transformer (HF) | ||||||||||||||||||||||
48 | 10 | 1 | System Design - ML – Design an LLM inference system with batching & caching. | Design an LLM inference system with batching & caching. | ||||||||||||||||||||||
49 | 10 | 2 | LLMs – Explain attention mechanism and complexity optimizations. | Explain attention mechanism and complexity optimizations. | ||||||||||||||||||||||
50 | 10 | 3 | Prompt Engineering Essentials | Prompt patterns, chains, pitfalls | ||||||||||||||||||||||
51 | 10 | 4 | Embeddings for Retrieval | Embedding models, similarity metrics | ||||||||||||||||||||||
52 | 10 | 5 | Vector Databases & FAISS | Index types, ANN, scaling considerations | ||||||||||||||||||||||
53 | 11 | 1 | RAG Architecture & Tradeoffs | Retrieval+generation pipelines, freshness, cost | ||||||||||||||||||||||
54 | 11 | 2 | RAG Lab: Build a simple RAG app | Hands-on: vectorize docs, retrieve, generate | ||||||||||||||||||||||
55 | 11 | 3 | MLOps: Pipelines & CI/CD | Experiment reproducibility, pipelines (Airflow/Prefect) | ||||||||||||||||||||||
56 | 11 | 4 | Model Registry & Versioning | MLflow, DVC concepts; promoting models | ||||||||||||||||||||||
57 | 11 | 5 | Monitoring & Drift Detection | Data & concept drift, alerts, SLIs/SLOs | ||||||||||||||||||||||
58 | 12 | 1 | Scaling ML Systems | Batch vs real-time, caching, sharding | ||||||||||||||||||||||
59 | 12 | 2 | Deployment Lab: Serve model | Hands-on: containerize + deploy a model (FastAPI) | ||||||||||||||||||||||
60 | 12 | 3 | ML System Design Fundamentals | Requirements, metrics, data flow diagrams | ||||||||||||||||||||||
61 | 12 | 4 | Feature Store Patterns | Materialization, online vs offline features | ||||||||||||||||||||||
62 | 12 | 5 | Real-time vs Batch Inference | Latency budgets, consistency tradeoffs | ||||||||||||||||||||||
63 | 13 | 1 | Case Studies: Recs, Search, Ads | Design patterns and tradeoffs in production systems | ||||||||||||||||||||||
64 | 13 | 2 | System Design Lab | Mock system design interview (team activity) | ||||||||||||||||||||||
65 | 13 | 3 | System Design - ML – Design a large‑scale real‑time recommendation system. | Design a large‑scale real‑time recommendation system. | ||||||||||||||||||||||
66 | 13 | 4 | Metrics & Evaluation – Choose metrics for fraud detection under label imbalance. | Choose metrics for fraud detection under label imbalance. | ||||||||||||||||||||||
67 | 13 | 5 | Capstone Proposal Presentations | Teams present proposals, feedback from instructors | ||||||||||||||||||||||
68 | 14 | 1 | Full Mock: ML Theory & Coding | Timed ML theory + coding mock (FAANG format) | ||||||||||||||||||||||
69 | 14 | 2 | Full Mock: LLMs & RAG | Timed LLM/RAG interview simulation | ||||||||||||||||||||||
70 | 14 | 3 | Full Mock: ML System Design | Timed ML system design mock | ||||||||||||||||||||||
71 | 14 | 4 | ML System Design Fundamentals | Deep dive: req gathering, data flows, feature pipelines, online/offline arch, latency/throughput, trade-offs. Case studies: RecSys, Ranking, Ads. | ||||||||||||||||||||||
72 | 14 | 5 | Feature Stores & Data Pipelines | Feature store architecture, offline/online sync, streaming pipelines, data quality, lineage. | ||||||||||||||||||||||
73 | 15 | 1 | Scaling Training: Distributed ML | Data-parallel, model-parallel, sharding, orchestration (Ray, Horovod), GPU/TPU basics. | ||||||||||||||||||||||
74 | 15 | 2 | Model Deployment & Monitoring | Batch vs realtime serving, canaries, shadow deploy, drift detection, alerting, retraining loops. | ||||||||||||||||||||||
75 | 15 | 3 | FAANMG System Design Drills | Practice FAANMG questions: Design real‑time recommendation system, LLM inference service, fraud detection pipeline. | ||||||||||||||||||||||
76 | 15 | 4 | LLMs in Production | LLM serving stacks, quantization, distillation, caching, batching, routing, inference optimization. | ||||||||||||||||||||||
77 | 15 | 5 | Retrieval Systems & Vector DBs | RAG architecture, embeddings, ANN search, FAISS, vector DB tuning, latency/recall tradeoffs. | ||||||||||||||||||||||
78 | 16 | 1 | Agents Intro | langchain to teach agents, explain what is chaining, api access - tool calling | ||||||||||||||||||||||
79 | 16 | 2 | Agents in Production | Step-by-step notebook tutorials that cover ingestion, retrieval, memory, tool routing, guardrails, evaluation, observability, CI/CD, cost tracking, security, and cloud deployment for production-ready AI agents. | ||||||||||||||||||||||
80 | 16 | 3 | Capstone Presentation & Feedback | |||||||||||||||||||||||
81 | 16 | 4 | Capstone Presentation & Feedback | |||||||||||||||||||||||
82 | 16 | 5 | Mock Interviews (FAANMG Focus) | Structured mock loops: ML coding + system design + theory + behavioral. | ||||||||||||||||||||||
83 | ||||||||||||||||||||||||||
84 | ||||||||||||||||||||||||||
85 | ||||||||||||||||||||||||||
86 | ||||||||||||||||||||||||||
87 | ||||||||||||||||||||||||||
88 | ||||||||||||||||||||||||||
89 | ||||||||||||||||||||||||||
90 | ||||||||||||||||||||||||||
91 | ||||||||||||||||||||||||||
92 | ||||||||||||||||||||||||||
93 | ||||||||||||||||||||||||||
94 | ||||||||||||||||||||||||||
95 | ||||||||||||||||||||||||||
96 | ||||||||||||||||||||||||||
97 | ||||||||||||||||||||||||||
98 | ||||||||||||||||||||||||||
99 | ||||||||||||||||||||||||||
100 |