
Android MC 2019 Progress Report

Lead Topic Wins Work Work "wins" as of June 2020 Losses

Sandeep Generic Kernel Image (GKI) progress

Matthias Monitoring and Stabilizing the In-Kernel ABI

General interest in mechanisms to stabilize
the in-kernel ABI. Multiple parties seem
interested to collaborate on this.

Scepticism about:
- What symbols to cover (observable, whitelist,
namespaces).
- To what extent, API can be covered by ABI
checks.

Expressed interest for a _working_ runtime
check (fix modversions).

- stable symbols are based on whitelists
submitted by partners
- "fix modversions" is being investigated.
Temporary solution is to trim exports to
only include whitelisted symbols so
modules using un-whitelisted symbols fail
to load
- ABI checks to have some holes (eg,
enums). Still investigating. May have
something to talk about at LPC

Saravana Solving issues associated with modules and supplier-consumer dependencies

Overall, the of_devlink series was well
received. DT and driver core maintainers
were mostly happy with the patches.
Regulator and GPIO maintainers raised
some questions but were in general okay
with the idea

- Work needed for adding support for other
common DT bindings.
- Question was raised how we plan to handle
non-generic dependencies (Eg: camera/media
pipeline). No great answer. Pointed out that a
"depends-on" binding was proposed early on,
but wasn't well received by DT maintainers.

Changes that have landed.
- fw_devlink feature to parse DT and
create device links.
- fw_devlink=permissive enabled by
default
- Support for several DT bindings: "clocks",
"interconnects", "iommus", "mboxes", "io-
channel", "interrupt-parent", "dmas",
"power-domains", "hwlocks", "extcon", "-
supply", "-gpio", "-gpios".
- Lots of improvements to correctly handle
cycles in DT dependencies. This is a step
towards enabling fw_devlink=on by
default.
- sync_state() support landed.
- fw_devlink support for devices added to
following busses: platform bus, i2c,
slimbus, pci, etc.
- Significant optimization to fw_devlink DT
parsing code

Upstream changes in progress:
- Adding sync_state() support to regulator
framework
- Adding sync_state() support to ICC
framework (discussions with ICC
maintainer)
- Exposing device link and sync_state()
details in sysfs

Alistair Android Virtualization (esp. Camera, DRM)

Interest in working on upstream virtio driver
for gpio. Support of virtio strategy for
Android emulation

- Moving as many features of Android reference
virtual platform to upstream virtio as possible

- Worked upstream to ratify virtio_snd,
virtio_video and virtio_rpmb.
- Switched to virtio_gpu and virtio_console.
- Vulkan over virtio_gpu was landed.

- Work on virtio gpio was not prioritized.
But this is still of interest and it will happen
this year.

Laurent libcamera: Unifying camera support on all Linux systems

libcamera is a candidate to implement
the host side of camera virtualisation for
Cuttlefish.

- libcamera is licensed under the LGPL-2.0+ to
avoid closed-source vendor forks. Find out how
to handle Android license requirements.
- Start discussions with the Android camera
team to exchange feedbacks on libcamera and
the Android camera HAL.

- RAW capture
- GStreamer element
- V4L2 compatibility layer (allowing V4L2
application to use libcamera
 transparently through LD_PRELOAD)
- Support for new platforms
 - Raspberry Pi (with a fully open-source
implementation of the image
 processing algorithms)
 - i.MX7

Android HAL and AOSP integration still
ongoing and possibly topic for discussion
at 2020 LPC. Interest from two major
mobile SoC vendors.

Daniel Emulated storage features (eg sdcardfs)
Ashish Eliminating WrapFS hackery in Android with ExtFUSE (eBPF/FUSE)

Maze How we're using ebpf in Android networking

perhaps we'll get some collaboration with
Linaro on testing and/or with beagle rack test
boards

might have been the wrong crowd for the
presentation (not networking & ebpf folks)

Tom Linaro Kernel Functional Testing (LKFT): functional testing of android common kernels

There exists tool which can take kernel logs
as input, and does some level of analysis
looking for anomylies. Followup post LPC.

Confirmed KASAN and clang sanitizers are a
logical next step. Prospects of including
Android as part of the RC cycle on linux-stable
were raised however no comment for/against
was received.

There are runs against the upstream RC
cycle. Likewise the work to
boot and run Android on consumer devices
continues. The Poco F1 and
Pixel3 have continued to be really useful.
(Plug for demo with Poco F1
here?)

I did share a few reports with Greg
privately from the RC cycle rules
but they seemed to get directed to
/dev/null.

The most effective route seems to be more
with mainline kernel rcs and
dev boards / consumer hardware checking
in to make sure things haven't
regressed. This has the positive attribute in
that everything is in
the open.

The LTS RC cycle Android Testing is less
than great because in order
to perform tests, we have no choice but to
blend out of tree Android
Common Patches with the candidate LTS
RC patches. It's a sort of
Frankenstein that only a small audience
cares about.

For a future LTS, (5.9?, 5.10?) I'm hopeful
we'll have a boot to UI
android for a device or two. With that,
THEN we could as a community
be effective testing android as part of the
upstream LTS RC cycle with
just the pure LTS RC, posting results since
there would be no out of
tree patches. Time will tell.

Suren Handling memory pressure on Android

No pushback against new syscall
introduction.

- Need ION usage accounted in lmkd kill
decisions
- process_madvise() should be designed to
support vectors for performance reasons.
Maybe 2 versions? Error handling is still a
question.

ION accounting was improved in the next
Android release which reports it separately
now.
process_madvise with vector support got
accepted into mm tree.

Sumit DMABUF Developments

Overall a good session, with clear
recognition of issues we raised, specifically
around partial cache flushing, and need to
sort the CMOs for ARM devices.
No apparent opposition from those present
for the dma-buf heaps design philosophy.

- Need to agree on clearing out dma-buf API
usage around enforcing exclusive ownership
boundaries between cpu and device.
- Heap discovery needs to be discussed in
context of AOSP
- Need to discuss Android need for Kernel
Graphics Buffers (dma-buf+meta data), and
investigate if that can be handled using drm
fourcc and format modifiers.

- DMA-BUF Heaps, taking longer then
expected, finally landed upstream in 5.6
- Vendors starting to migrate from ION to
DMA BUF Heaps
- Work at Google ongoing for helper
libraries for userland transition
- Further discussions continuing around
heap limitations and continuing issues with
consistent cache handling behavior

Alistair DRM/KMS for Android, adoption and upstreaming

Proposals from drm/drm-misc maintainers
to backport upstream (e.g. 5.4) version of
drm core to older kernels for Android, to
help decrease fragmentation of upstream
and non-upstream GPU/display drivers.

DRM drivers can override fundamental features
affecting userspace like drmIoctl. The
Android/GKI kernels might need to take firmer
steps than upstream to ensure baseline
functionality/extensions are present

Unfortunately the Android kernel team did
not have the bandwidth this year to require
DRM/KMS. We plan to require this next
year.

Suren scheduler: uclamp usage on Android
User space support for uclamp usage is in
place in the next Android release.

Vincenzo Memory tagging

The proposed Kernel Interface for
userspace support of the Memory Tagging
Extension seems understood and
reasonably accepted.

- Deploy the inial patchset. Expected
comments.

Notes:
"Wins" is any progress or agreement that has been made about the topic during the MC
"Work" is any work that was identified as being required to be done as a result of MC discussion
"Loses" is for highlighting issues which are clearly at an impass and are not forseen to be resolvable in their current form/approach
It's suggested to put major takeaways in bold. If, for example, within the 3 categories a given item is important enough that it should stand out in its meaningfulness (especially to outside observers) then making it bold (or underline) will help making it obvious "at a glance". For instance, if "Work" describes "Mergeable under condition that feature foo is made to use existing kernel API" and that's deemed an important advancement then that might be a good reason to put it in bold. Possibly end of week readouts should just call out the items in bold.

