1 | Estimate of Complexity | Processing Power Needed | How Determined | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2 | Easy: Ray Kurzweil's estimate #1 from Singularity Is Near | 10^14 instructions/second | Extrapolated from the weight of the portion of the brain responsible for image processing to, compared to the computer computation necessary to recreate | ||||||||
3 | Medium: Ray Kurzweil's estimate #2 from Singularity Is Near | 10^15 instructions/second | Based on the human brain containing 10^11 neurons, and it taking 10^4 instructions per neuron. | ||||||||
4 | Hard: My worst case scenario: brute force simulation of every neuron | 10^18 instructions/second | Brute force simulation of 10^11 neurons, each having 10^4 synapses, firing up to 10^3 times per second. | ||||||||
5 | 40,000,000,000 | 40 billion neurons | |||||||||
6 | With Glial cells | 10^20 | Approximately 10x glial cells, assume it has a 10^3 cost above brute force neuron simulation | ||||||||
7 | |||||||||||
8 | |||||||||||
9 | Computer | MIPS | Year | ||||||||
10 | Intel Pentium Pro | 541 | 1996 | ||||||||
11 | Intel Core i7 3960X | 177730 | 2011 | ||||||||
12 | 14.94157189 | ||||||||||
13 | Gap in years | 15 | |||||||||
14 | Total Growth | 328.52 | |||||||||
15 | Rate of growth | 1.47 | |||||||||
16 | |||||||||||
17 | Mips | 1,000,000 | |||||||||
18 | Num Computers | 1 | 100 | 10000 | |||||||
19 | Percent of lower bound (10^14) | Percent of middle bound | Percent of upper bound | Percent of lower bound (10^14) | Percent of middle bound | Percent of upper bound | Percent of lower bound (10^14) | Percent of middle bound | Percent of upper bound | ||
20 | 100000000000000 | 1E+16 | 1E+18 | 100000000000000 | 1E+16 | 1E+18 | 100000000000000 | 1E+16 | 1E+18 | ||
21 | 2011 | 177,730 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 17.77 | 0.18 | 0.00 |
22 | 2012 | 261,536 | 0.00 | 0.00 | 0.00 | 0.26 | 0.00 | 0.00 | 26.15 | 0.26 | 0.00 |
23 | 2013 | 384,860 | 0.00 | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 38.49 | 0.38 | 0.00 |
24 | 2014 | 566,335 | 0.01 | 0.00 | 0.00 | 0.57 | 0.01 | 0.00 | 56.63 | 0.57 | 0.01 |
25 | 2015 | 833,382 | 0.01 | 0.00 | 0.00 | 0.83 | 0.01 | 0.00 | 83.34 | 0.83 | 0.01 |
26 | 2016 | 1,226,352 | 0.01 | 0.00 | 0.00 | 1.23 | 0.01 | 0.00 | 122.64 | 1.23 | 0.01 |
27 | 2017 | 1,804,622 | 0.02 | 0.00 | 0.00 | 1.80 | 0.02 | 0.00 | 180.46 | 1.80 | 0.02 |
28 | 2018 | 2,655,566 | 0.03 | 0.00 | 0.00 | 2.66 | 0.03 | 0.00 | 265.56 | 2.66 | 0.03 |
29 | 2019 | 3,907,760 | 0.04 | 0.00 | 0.00 | 3.91 | 0.04 | 0.00 | 390.78 | 3.91 | 0.04 |
30 | 2020 | 5,750,410 | 0.06 | 0.00 | 0.00 | 5.75 | 0.06 | 0.00 | 575.04 | 5.75 | 0.06 |
31 | 2021 | 8,461,936 | 0.08 | 0.00 | 0.00 | 8.46 | 0.08 | 0.00 | 846.19 | 8.46 | 0.08 |
32 | 2022 | 12,452,043 | 0.12 | 0.00 | 0.00 | 12.45 | 0.12 | 0.00 | 1,245.20 | 12.45 | 0.12 |
33 | 2023 | 18,323,630 | 0.18 | 0.00 | 0.00 | 18.32 | 0.18 | 0.00 | 1,832.36 | 18.32 | 0.18 |
34 | 2024 | 26,963,882 | 0.27 | 0.00 | 0.00 | 26.96 | 0.27 | 0.00 | 2,696.39 | 26.96 | 0.27 |
35 | 2025 | 39,678,324 | 0.40 | 0.00 | 0.00 | 39.68 | 0.40 | 0.00 | 3,967.83 | 39.68 | 0.40 |
36 | 2026 | 58,388,083 | 0.58 | 0.01 | 0.00 | 58.39 | 0.58 | 0.01 | 5,838.81 | 58.39 | 0.58 |
37 | 2027 | 85,920,168 | 0.86 | 0.01 | 0.00 | 85.92 | 0.86 | 0.01 | 8,592.02 | 85.92 | 0.86 |
38 | 2028 | 126,434,622 | 1.26 | 0.01 | 0.00 | 126.43 | 1.26 | 0.01 | 12,643.46 | 126.43 | 1.26 |
39 | 2029 | 186,053,101 | 1.86 | 0.02 | 0.00 | 186.05 | 1.86 | 0.02 | 18,605.31 | 186.05 | 1.86 |
40 | 2030 | 273,783,840 | 2.74 | 0.03 | 0.00 | 273.78 | 2.74 | 0.03 | 27,378.38 | 273.78 | 2.74 |
41 | 2031 | 402,882,783 | 4.03 | 0.04 | 0.00 | 402.88 | 4.03 | 0.04 | 40,288.28 | 402.88 | 4.03 |
42 | 2032 | 592,856,529 | 5.93 | 0.06 | 0.00 | 592.86 | 5.93 | 0.06 | 59,285.65 | 592.86 | 5.93 |
43 | 2033 | 872,409,740 | 8.72 | 0.09 | 0.00 | 872.41 | 8.72 | 0.09 | 87,240.97 | 872.41 | 8.72 |
44 | 2034 | 1,283,782,360 | 12.84 | 0.13 | 0.00 | 1,283.78 | 12.84 | 0.13 | 128,378.24 | 1,283.78 | 12.84 |
45 | 2035 | 1,889,131,989 | 18.89 | 0.19 | 0.00 | 1,889.13 | 18.89 | 0.19 | 188,913.20 | 1,889.13 | 18.89 |
46 | 2036 | 2,779,925,777 | 27.80 | 0.28 | 0.00 | 2,779.93 | 27.80 | 0.28 | 277,992.58 | 2,779.93 | 27.80 |
47 | 2037 | 4,090,760,925 | 40.91 | 0.41 | 0.00 | 4,090.76 | 40.91 | 0.41 | 409,076.09 | 4,090.76 | 40.91 |
48 | 2038 | 6,019,702,067 | 60.20 | 0.60 | 0.01 | 6,019.70 | 60.20 | 0.60 | 601,970.21 | 6,019.70 | 60.20 |
49 | 2039 | 8,858,208,447 | 88.58 | 0.89 | 0.01 | 8,858.21 | 88.58 | 0.89 | 885,820.84 | 8,858.21 | 88.58 |
50 | 2040 | 13,035,172,840 | 130.35 | 1.30 | 0.01 | 13,035.17 | 130.35 | 1.30 | 1,303,517.28 | 13,035.17 | 130.35 |
51 | 2041 | 19,181,726,415 | 191.82 | 1.92 | 0.02 | 19,181.73 | 191.82 | 1.92 | 1,918,172.64 | 19,181.73 | 191.82 |
52 | 2042 | 28,226,601,426 | 282.27 | 2.82 | 0.03 | 28,226.60 | 282.27 | 2.82 | 2,822,660.14 | 28,226.60 | 282.27 |
53 | 2043 | 41,536,460,839 | 415.36 | 4.15 | 0.04 | 41,536.46 | 415.36 | 4.15 | 4,153,646.08 | 41,536.46 | 415.36 |
54 | 2044 | 61,122,398,441 | 611.22 | 6.11 | 0.06 | 61,122.40 | 611.22 | 6.11 | 6,112,239.84 | 61,122.40 | 611.22 |
55 | 2045 | 89,943,811,191 | 899.44 | 8.99 | 0.09 | 89,943.81 | 899.44 | 8.99 | 8,994,381.12 | 89,943.81 | 899.44 |
56 | 2046 | 132,355,558,321 | 1,323.56 | 13.24 | 0.13 | 132,355.56 | 1,323.56 | 13.24 | 13,235,555.83 | 132,355.56 | 1,323.56 |
57 | 2047 | 194,765,972,070 | 1,947.66 | 19.48 | 0.19 | 194,765.97 | 1,947.66 | 19.48 | 19,476,597.21 | 194,765.97 | 1,947.66 |
58 | 2048 | 286,605,144,187 | 2,866.05 | 28.66 | 0.29 | 286,605.14 | 2,866.05 | 28.66 | 28,660,514.42 | 286,605.14 | 2,866.05 |
59 | 2049 | 421,749,794,389 | 4,217.50 | 42.17 | 0.42 | 421,749.79 | 4,217.50 | 42.17 | 42,174,979.44 | 421,749.79 | 4,217.50 |
60 | 2050 | 620,620,015,637 | 6,206.20 | 62.06 | 0.62 | 620,620.02 | 6,206.20 | 62.06 | 62,062,001.56 | 620,620.02 | 6,206.20 |
61 | 2051 | 913,264,710,341 | 0.91 | ||||||||
62 | 2052 | 1,343,901,920,885 | 1.34 | ||||||||
63 | 2053 | 1,977,600,089,556 | 1.98 |