A European Square Root Algorithm
The version of the browser you are using is no longer supported. Please upgrade to a supported browser.Dismiss

ABCDEFGHIJKLMNOPQRSTUVWXYZ
1
This spreadsheet illustrates a method for finding square roots from Europe in the Middle Ages.
2
Call the number whose square root you want N.
3
Across the top row, start with 1. Skip a space, then multiply by N.
4
Repeat for as long as you want.
5
Fill in guesses in the blank spaces. You can just repeat the previous number.
6
In the next row, add the two numbers in the row above (as in Pascal's Triangle).
7
When the row is only two numbers long, take the ratio. This is (approximately) the square root of N.
8
9
Change only the numbers in shaded cells. You only really need to enter N in cell C13.
10
11
It produces two numbers whose ratio approaches
12
Find the square root of this number:
5
13
ratio of 1st 2 terms
14
11155252512512562562531253125156251562578125
15
326103050150250750125037506250187503125093750
16
28164080200400100020005000100002500050000125000
17
2.333333333245612028060014003000700015000350007500017500000
18
2.28017640088020004400100002200050000110000250000000
19
2.25256576128028806400144003200072000160000360000000
20
2.23076923183218564160928020800464001040002320005200000000
21
2.2380952382688601613440300806720015040033600075200000000
22
2.23529411887041945643520972802176004864001088000000000
23
2.23636363628160629761408003148807040001574400000000
24
2.2359550569113620377645568010188802278400000000
25
2.23611111129491265945614745603297280000000
26
2.23605150295436821340164771840000000
27
2.23607427130883846905856
28
29
For comparison, the spreadsheet's calculation of the square root of
5is 2.236067977
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100